Step |
Hyp |
Ref |
Expression |
1 |
|
ondif2 |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) ↔ ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ) |
2 |
1
|
3anbi1i |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ↔ ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) |
3 |
|
3anrot |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ↔ ( 𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) ) |
4 |
2 3
|
sylbb1 |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) ) |
5 |
|
oeord |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝐵 ∈ 𝐶 ↔ ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
6 |
4 5
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐶 ↔ ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |