| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ondif2 | ⊢ ( 𝐴  ∈  ( On  ∖  2o )  ↔  ( 𝐴  ∈  On  ∧  1o  ∈  𝐴 ) ) | 
						
							| 2 | 1 | 3anbi1i | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ↔  ( ( 𝐴  ∈  On  ∧  1o  ∈  𝐴 )  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On ) ) | 
						
							| 3 |  | 3anrot | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ↔  ( 𝐵  ∈  On  ∧  𝐶  ∈  On  ∧  𝐴  ∈  ( On  ∖  2o ) ) ) | 
						
							| 4 | 2 3 | sylbb1 | ⊢ ( ( ( 𝐴  ∈  On  ∧  1o  ∈  𝐴 )  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐵  ∈  On  ∧  𝐶  ∈  On  ∧  𝐴  ∈  ( On  ∖  2o ) ) ) | 
						
							| 5 |  | oeord | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On  ∧  𝐴  ∈  ( On  ∖  2o ) )  →  ( 𝐵  ∈  𝐶  ↔  ( 𝐴  ↑o  𝐵 )  ∈  ( 𝐴  ↑o  𝐶 ) ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( ( 𝐴  ∈  On  ∧  1o  ∈  𝐴 )  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐵  ∈  𝐶  ↔  ( 𝐴  ↑o  𝐵 )  ∈  ( 𝐴  ↑o  𝐶 ) ) ) |