Metamath Proof Explorer


Theorem oeord2com

Description: When the same base at least as large as two is raised to ordinal powers, , ordering of the power is equivalent to the ordering of the exponents. Theorem 3.24 of Schloeder p. 11. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion oeord2com ( ( ( 𝐴 ∈ On ∧ 1o𝐴 ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐶 ↔ ( 𝐴o 𝐵 ) ∈ ( 𝐴o 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 ondif2 ( 𝐴 ∈ ( On ∖ 2o ) ↔ ( 𝐴 ∈ On ∧ 1o𝐴 ) )
2 1 3anbi1i ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ↔ ( ( 𝐴 ∈ On ∧ 1o𝐴 ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) )
3 3anrot ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ↔ ( 𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) )
4 2 3 sylbb1 ( ( ( 𝐴 ∈ On ∧ 1o𝐴 ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) )
5 oeord ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝐵𝐶 ↔ ( 𝐴o 𝐵 ) ∈ ( 𝐴o 𝐶 ) ) )
6 4 5 syl ( ( ( 𝐴 ∈ On ∧ 1o𝐴 ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐶 ↔ ( 𝐴o 𝐵 ) ∈ ( 𝐴o 𝐶 ) ) )