Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → 𝐴 ∈ ω ) |
2 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → 𝐴 ∈ On ) |
4 |
|
omelon |
⊢ ω ∈ On |
5 |
|
limom |
⊢ Lim ω |
6 |
4 5
|
pm3.2i |
⊢ ( ω ∈ On ∧ Lim ω ) |
7 |
6
|
a1i |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → ( ω ∈ On ∧ Lim ω ) ) |
8 |
|
0elon |
⊢ ∅ ∈ On |
9 |
8
|
a1i |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → ∅ ∈ On ) |
10 |
|
0ss |
⊢ ∅ ⊆ 1o |
11 |
10
|
a1i |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → ∅ ⊆ 1o ) |
12 |
|
simpr |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → 1o ∈ 𝐴 ) |
13 |
|
ontr2 |
⊢ ( ( ∅ ∈ On ∧ 𝐴 ∈ On ) → ( ( ∅ ⊆ 1o ∧ 1o ∈ 𝐴 ) → ∅ ∈ 𝐴 ) ) |
14 |
13
|
imp |
⊢ ( ( ( ∅ ∈ On ∧ 𝐴 ∈ On ) ∧ ( ∅ ⊆ 1o ∧ 1o ∈ 𝐴 ) ) → ∅ ∈ 𝐴 ) |
15 |
9 3 11 12 14
|
syl22anc |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → ∅ ∈ 𝐴 ) |
16 |
|
oelim |
⊢ ( ( ( 𝐴 ∈ On ∧ ( ω ∈ On ∧ Lim ω ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o ω ) = ∪ 𝑥 ∈ ω ( 𝐴 ↑o 𝑥 ) ) |
17 |
3 7 15 16
|
syl21anc |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → ( 𝐴 ↑o ω ) = ∪ 𝑥 ∈ ω ( 𝐴 ↑o 𝑥 ) ) |
18 |
|
ovex |
⊢ ( 𝐴 ↑o 𝑥 ) ∈ V |
19 |
18
|
dfiun2 |
⊢ ∪ 𝑥 ∈ ω ( 𝐴 ↑o 𝑥 ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ ω 𝑦 = ( 𝐴 ↑o 𝑥 ) } |
20 |
|
eluniab |
⊢ ( 𝑧 ∈ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ ω 𝑦 = ( 𝐴 ↑o 𝑥 ) } ↔ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ ∃ 𝑥 ∈ ω 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) |
21 |
|
19.42v |
⊢ ( ∃ 𝑥 ( 𝑧 ∈ 𝑦 ∧ ( 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) ↔ ( 𝑧 ∈ 𝑦 ∧ ∃ 𝑥 ( 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) ) |
22 |
|
3anass |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 ∧ ( 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) ) |
23 |
22
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ↔ ∃ 𝑥 ( 𝑧 ∈ 𝑦 ∧ ( 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) ) |
24 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ω 𝑦 = ( 𝐴 ↑o 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) |
25 |
24
|
anbi2i |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ ∃ 𝑥 ∈ ω 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 ∧ ∃ 𝑥 ( 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) ) |
26 |
21 23 25
|
3bitr4ri |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ ∃ 𝑥 ∈ ω 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ↔ ∃ 𝑥 ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) |
27 |
26
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ ∃ 𝑥 ∈ ω 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ↔ ∃ 𝑦 ∃ 𝑥 ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) |
28 |
|
excom |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) |
29 |
20 27 28
|
3bitri |
⊢ ( 𝑧 ∈ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ ω 𝑦 = ( 𝐴 ↑o 𝑥 ) } ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) |
30 |
|
simpr3 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) → 𝑦 = ( 𝐴 ↑o 𝑥 ) ) |
31 |
|
simp2 |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) → 𝑥 ∈ ω ) |
32 |
|
nnecl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 ↑o 𝑥 ) ∈ ω ) |
33 |
1 31 32
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) → ( 𝐴 ↑o 𝑥 ) ∈ ω ) |
34 |
|
onelss |
⊢ ( ω ∈ On → ( ( 𝐴 ↑o 𝑥 ) ∈ ω → ( 𝐴 ↑o 𝑥 ) ⊆ ω ) ) |
35 |
4 33 34
|
mpsyl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) → ( 𝐴 ↑o 𝑥 ) ⊆ ω ) |
36 |
30 35
|
eqsstrd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) → 𝑦 ⊆ ω ) |
37 |
|
simpr1 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) → 𝑧 ∈ 𝑦 ) |
38 |
36 37
|
sseldd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) → 𝑧 ∈ ω ) |
39 |
38
|
ex |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) → 𝑧 ∈ ω ) ) |
40 |
39
|
exlimdvv |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) → 𝑧 ∈ ω ) ) |
41 |
|
peano2 |
⊢ ( 𝑧 ∈ ω → suc 𝑧 ∈ ω ) |
42 |
41
|
adantl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) ∧ 𝑧 ∈ ω ) → suc 𝑧 ∈ ω ) |
43 |
|
ovex |
⊢ ( 𝐴 ↑o suc 𝑧 ) ∈ V |
44 |
43
|
a1i |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) ∧ 𝑧 ∈ ω ) → ( 𝐴 ↑o suc 𝑧 ) ∈ V ) |
45 |
2
|
anim1i |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ) |
46 |
|
ondif2 |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) ↔ ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ) |
47 |
45 46
|
sylibr |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → 𝐴 ∈ ( On ∖ 2o ) ) |
48 |
|
nnon |
⊢ ( suc 𝑧 ∈ ω → suc 𝑧 ∈ On ) |
49 |
41 48
|
syl |
⊢ ( 𝑧 ∈ ω → suc 𝑧 ∈ On ) |
50 |
|
oeworde |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ suc 𝑧 ∈ On ) → suc 𝑧 ⊆ ( 𝐴 ↑o suc 𝑧 ) ) |
51 |
47 49 50
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) ∧ 𝑧 ∈ ω ) → suc 𝑧 ⊆ ( 𝐴 ↑o suc 𝑧 ) ) |
52 |
|
vex |
⊢ 𝑧 ∈ V |
53 |
52
|
sucid |
⊢ 𝑧 ∈ suc 𝑧 |
54 |
53
|
a1i |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) ∧ 𝑧 ∈ ω ) → 𝑧 ∈ suc 𝑧 ) |
55 |
51 54
|
sseldd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) ∧ 𝑧 ∈ ω ) → 𝑧 ∈ ( 𝐴 ↑o suc 𝑧 ) ) |
56 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) ∧ 𝑧 ∈ ω ) → ( 𝐴 ↑o suc 𝑧 ) = ( 𝐴 ↑o suc 𝑧 ) ) |
57 |
55 42 56
|
3jca |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) ∧ 𝑧 ∈ ω ) → ( 𝑧 ∈ ( 𝐴 ↑o suc 𝑧 ) ∧ suc 𝑧 ∈ ω ∧ ( 𝐴 ↑o suc 𝑧 ) = ( 𝐴 ↑o suc 𝑧 ) ) ) |
58 |
|
eleq2 |
⊢ ( 𝑦 = ( 𝐴 ↑o suc 𝑧 ) → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ( 𝐴 ↑o suc 𝑧 ) ) ) |
59 |
|
eqeq1 |
⊢ ( 𝑦 = ( 𝐴 ↑o suc 𝑧 ) → ( 𝑦 = ( 𝐴 ↑o suc 𝑧 ) ↔ ( 𝐴 ↑o suc 𝑧 ) = ( 𝐴 ↑o suc 𝑧 ) ) ) |
60 |
58 59
|
3anbi13d |
⊢ ( 𝑦 = ( 𝐴 ↑o suc 𝑧 ) → ( ( 𝑧 ∈ 𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o suc 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝐴 ↑o suc 𝑧 ) ∧ suc 𝑧 ∈ ω ∧ ( 𝐴 ↑o suc 𝑧 ) = ( 𝐴 ↑o suc 𝑧 ) ) ) ) |
61 |
44 57 60
|
spcedv |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) ∧ 𝑧 ∈ ω ) → ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o suc 𝑧 ) ) ) |
62 |
|
eleq1 |
⊢ ( 𝑥 = suc 𝑧 → ( 𝑥 ∈ ω ↔ suc 𝑧 ∈ ω ) ) |
63 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑧 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝑧 ) ) |
64 |
63
|
eqeq2d |
⊢ ( 𝑥 = suc 𝑧 → ( 𝑦 = ( 𝐴 ↑o 𝑥 ) ↔ 𝑦 = ( 𝐴 ↑o suc 𝑧 ) ) ) |
65 |
62 64
|
3anbi23d |
⊢ ( 𝑥 = suc 𝑧 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o suc 𝑧 ) ) ) ) |
66 |
65
|
exbidv |
⊢ ( 𝑥 = suc 𝑧 → ( ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ↔ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ suc 𝑧 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o suc 𝑧 ) ) ) ) |
67 |
42 61 66
|
spcedv |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) ∧ 𝑧 ∈ ω ) → ∃ 𝑥 ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) |
68 |
67
|
ex |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → ( 𝑧 ∈ ω → ∃ 𝑥 ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ) ) |
69 |
40 68
|
impbid |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑥 ∈ ω ∧ 𝑦 = ( 𝐴 ↑o 𝑥 ) ) ↔ 𝑧 ∈ ω ) ) |
70 |
29 69
|
bitrid |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → ( 𝑧 ∈ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ ω 𝑦 = ( 𝐴 ↑o 𝑥 ) } ↔ 𝑧 ∈ ω ) ) |
71 |
70
|
eqrdv |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → ∪ { 𝑦 ∣ ∃ 𝑥 ∈ ω 𝑦 = ( 𝐴 ↑o 𝑥 ) } = ω ) |
72 |
19 71
|
eqtrid |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → ∪ 𝑥 ∈ ω ( 𝐴 ↑o 𝑥 ) = ω ) |
73 |
17 72
|
eqtrd |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ 𝐴 ) → ( 𝐴 ↑o ω ) = ω ) |