Metamath Proof Explorer


Theorem df3o2

Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021)

Ref Expression
Assertion df3o2 3o = { ∅ , 1o , 2o }

Proof

Step Hyp Ref Expression
1 df-3o 3o = suc 2o
2 df2o3 2o = { ∅ , 1o }
3 2 uneq1i ( 2o ∪ { 2o } ) = ( { ∅ , 1o } ∪ { 2o } )
4 df-suc suc 2o = ( 2o ∪ { 2o } )
5 df-tp { ∅ , 1o , 2o } = ( { ∅ , 1o } ∪ { 2o } )
6 3 4 5 3eqtr4i suc 2o = { ∅ , 1o , 2o }
7 1 6 eqtri 3o = { ∅ , 1o , 2o }