| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluni |
⊢ ( 𝐴 ∈ ∪ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑦 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) |
| 2 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ∈ 𝑦 |
| 3 |
|
nfsab1 |
⊢ Ⅎ 𝑥 𝑦 ∈ { 𝑥 ∣ 𝜑 } |
| 4 |
2 3
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) |
| 6 |
|
eleq2w |
⊢ ( 𝑦 = 𝑥 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥 ) ) |
| 7 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑥 ∈ { 𝑥 ∣ 𝜑 } ) ) |
| 8 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) |
| 9 |
7 8
|
bitrdi |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) ) |
| 10 |
6 9
|
anbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) ) ) |
| 11 |
4 5 10
|
cbvexv1 |
⊢ ( ∃ 𝑦 ( 𝐴 ∈ 𝑦 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) ) |
| 12 |
1 11
|
bitri |
⊢ ( 𝐴 ∈ ∪ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) ) |