Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
nnon |
|
3 |
1 2
|
syl |
|
4 |
|
omelon |
|
5 |
|
limom |
|
6 |
4 5
|
pm3.2i |
|
7 |
6
|
a1i |
|
8 |
|
0elon |
|
9 |
8
|
a1i |
|
10 |
|
0ss |
|
11 |
10
|
a1i |
|
12 |
|
simpr |
|
13 |
|
ontr2 |
|
14 |
13
|
imp |
|
15 |
9 3 11 12 14
|
syl22anc |
|
16 |
|
oelim |
|
17 |
3 7 15 16
|
syl21anc |
|
18 |
|
ovex |
|
19 |
18
|
dfiun2 |
|
20 |
|
eluniab |
|
21 |
|
19.42v |
|
22 |
|
3anass |
|
23 |
22
|
exbii |
|
24 |
|
df-rex |
|
25 |
24
|
anbi2i |
|
26 |
21 23 25
|
3bitr4ri |
|
27 |
26
|
exbii |
|
28 |
|
excom |
|
29 |
20 27 28
|
3bitri |
|
30 |
|
simpr3 |
|
31 |
|
simp2 |
|
32 |
|
nnecl |
|
33 |
1 31 32
|
syl2an |
|
34 |
|
onelss |
|
35 |
4 33 34
|
mpsyl |
|
36 |
30 35
|
eqsstrd |
|
37 |
|
simpr1 |
|
38 |
36 37
|
sseldd |
|
39 |
38
|
ex |
|
40 |
39
|
exlimdvv |
|
41 |
|
peano2 |
|
42 |
41
|
adantl |
|
43 |
|
ovex |
|
44 |
43
|
a1i |
|
45 |
2
|
anim1i |
|
46 |
|
ondif2 |
|
47 |
45 46
|
sylibr |
|
48 |
|
nnon |
|
49 |
41 48
|
syl |
|
50 |
|
oeworde |
|
51 |
47 49 50
|
syl2an |
|
52 |
|
vex |
|
53 |
52
|
sucid |
|
54 |
53
|
a1i |
|
55 |
51 54
|
sseldd |
|
56 |
|
eqidd |
|
57 |
55 42 56
|
3jca |
|
58 |
|
eleq2 |
|
59 |
|
eqeq1 |
|
60 |
58 59
|
3anbi13d |
|
61 |
44 57 60
|
spcedv |
|
62 |
|
eleq1 |
|
63 |
|
oveq2 |
|
64 |
63
|
eqeq2d |
|
65 |
62 64
|
3anbi23d |
|
66 |
65
|
exbidv |
|
67 |
42 61 66
|
spcedv |
|
68 |
67
|
ex |
|
69 |
40 68
|
impbid |
|
70 |
29 69
|
bitrid |
|
71 |
70
|
eqrdv |
|
72 |
19 71
|
eqtrid |
|
73 |
17 72
|
eqtrd |
|