| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  | 
						
							| 2 |  | nnon |  | 
						
							| 3 | 1 2 | syl |  | 
						
							| 4 |  | omelon |  | 
						
							| 5 |  | limom |  | 
						
							| 6 | 4 5 | pm3.2i |  | 
						
							| 7 | 6 | a1i |  | 
						
							| 8 |  | 0elon |  | 
						
							| 9 | 8 | a1i |  | 
						
							| 10 |  | 0ss |  | 
						
							| 11 | 10 | a1i |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 |  | ontr2 |  | 
						
							| 14 | 13 | imp |  | 
						
							| 15 | 9 3 11 12 14 | syl22anc |  | 
						
							| 16 |  | oelim |  | 
						
							| 17 | 3 7 15 16 | syl21anc |  | 
						
							| 18 |  | ovex |  | 
						
							| 19 | 18 | dfiun2 |  | 
						
							| 20 |  | eluniab |  | 
						
							| 21 |  | 19.42v |  | 
						
							| 22 |  | 3anass |  | 
						
							| 23 | 22 | exbii |  | 
						
							| 24 |  | df-rex |  | 
						
							| 25 | 24 | anbi2i |  | 
						
							| 26 | 21 23 25 | 3bitr4ri |  | 
						
							| 27 | 26 | exbii |  | 
						
							| 28 |  | excom |  | 
						
							| 29 | 20 27 28 | 3bitri |  | 
						
							| 30 |  | simpr3 |  | 
						
							| 31 |  | simp2 |  | 
						
							| 32 |  | nnecl |  | 
						
							| 33 | 1 31 32 | syl2an |  | 
						
							| 34 |  | onelss |  | 
						
							| 35 | 4 33 34 | mpsyl |  | 
						
							| 36 | 30 35 | eqsstrd |  | 
						
							| 37 |  | simpr1 |  | 
						
							| 38 | 36 37 | sseldd |  | 
						
							| 39 | 38 | ex |  | 
						
							| 40 | 39 | exlimdvv |  | 
						
							| 41 |  | peano2 |  | 
						
							| 42 | 41 | adantl |  | 
						
							| 43 |  | ovex |  | 
						
							| 44 | 43 | a1i |  | 
						
							| 45 | 2 | anim1i |  | 
						
							| 46 |  | ondif2 |  | 
						
							| 47 | 45 46 | sylibr |  | 
						
							| 48 |  | nnon |  | 
						
							| 49 | 41 48 | syl |  | 
						
							| 50 |  | oeworde |  | 
						
							| 51 | 47 49 50 | syl2an |  | 
						
							| 52 |  | vex |  | 
						
							| 53 | 52 | sucid |  | 
						
							| 54 | 53 | a1i |  | 
						
							| 55 | 51 54 | sseldd |  | 
						
							| 56 |  | eqidd |  | 
						
							| 57 | 55 42 56 | 3jca |  | 
						
							| 58 |  | eleq2 |  | 
						
							| 59 |  | eqeq1 |  | 
						
							| 60 | 58 59 | 3anbi13d |  | 
						
							| 61 | 44 57 60 | spcedv |  | 
						
							| 62 |  | eleq1 |  | 
						
							| 63 |  | oveq2 |  | 
						
							| 64 | 63 | eqeq2d |  | 
						
							| 65 | 62 64 | 3anbi23d |  | 
						
							| 66 | 65 | exbidv |  | 
						
							| 67 | 42 61 66 | spcedv |  | 
						
							| 68 | 67 | ex |  | 
						
							| 69 | 40 68 | impbid |  | 
						
							| 70 | 29 69 | bitrid |  | 
						
							| 71 | 70 | eqrdv |  | 
						
							| 72 | 19 71 | eqtrid |  | 
						
							| 73 | 17 72 | eqtrd |  |