Metamath Proof Explorer


Theorem nnoeomeqom

Description: Any natural number at least as large as two raised to the power of omega is omega. Lemma 3.25 of Schloeder p. 11. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion nnoeomeqom A ω 1 𝑜 A A 𝑜 ω = ω

Proof

Step Hyp Ref Expression
1 simpl A ω 1 𝑜 A A ω
2 nnon A ω A On
3 1 2 syl A ω 1 𝑜 A A On
4 omelon ω On
5 limom Lim ω
6 4 5 pm3.2i ω On Lim ω
7 6 a1i A ω 1 𝑜 A ω On Lim ω
8 0elon On
9 8 a1i A ω 1 𝑜 A On
10 0ss 1 𝑜
11 10 a1i A ω 1 𝑜 A 1 𝑜
12 simpr A ω 1 𝑜 A 1 𝑜 A
13 ontr2 On A On 1 𝑜 1 𝑜 A A
14 13 imp On A On 1 𝑜 1 𝑜 A A
15 9 3 11 12 14 syl22anc A ω 1 𝑜 A A
16 oelim A On ω On Lim ω A A 𝑜 ω = x ω A 𝑜 x
17 3 7 15 16 syl21anc A ω 1 𝑜 A A 𝑜 ω = x ω A 𝑜 x
18 ovex A 𝑜 x V
19 18 dfiun2 x ω A 𝑜 x = y | x ω y = A 𝑜 x
20 eluniab z y | x ω y = A 𝑜 x y z y x ω y = A 𝑜 x
21 19.42v x z y x ω y = A 𝑜 x z y x x ω y = A 𝑜 x
22 3anass z y x ω y = A 𝑜 x z y x ω y = A 𝑜 x
23 22 exbii x z y x ω y = A 𝑜 x x z y x ω y = A 𝑜 x
24 df-rex x ω y = A 𝑜 x x x ω y = A 𝑜 x
25 24 anbi2i z y x ω y = A 𝑜 x z y x x ω y = A 𝑜 x
26 21 23 25 3bitr4ri z y x ω y = A 𝑜 x x z y x ω y = A 𝑜 x
27 26 exbii y z y x ω y = A 𝑜 x y x z y x ω y = A 𝑜 x
28 excom y x z y x ω y = A 𝑜 x x y z y x ω y = A 𝑜 x
29 20 27 28 3bitri z y | x ω y = A 𝑜 x x y z y x ω y = A 𝑜 x
30 simpr3 A ω 1 𝑜 A z y x ω y = A 𝑜 x y = A 𝑜 x
31 simp2 z y x ω y = A 𝑜 x x ω
32 nnecl A ω x ω A 𝑜 x ω
33 1 31 32 syl2an A ω 1 𝑜 A z y x ω y = A 𝑜 x A 𝑜 x ω
34 onelss ω On A 𝑜 x ω A 𝑜 x ω
35 4 33 34 mpsyl A ω 1 𝑜 A z y x ω y = A 𝑜 x A 𝑜 x ω
36 30 35 eqsstrd A ω 1 𝑜 A z y x ω y = A 𝑜 x y ω
37 simpr1 A ω 1 𝑜 A z y x ω y = A 𝑜 x z y
38 36 37 sseldd A ω 1 𝑜 A z y x ω y = A 𝑜 x z ω
39 38 ex A ω 1 𝑜 A z y x ω y = A 𝑜 x z ω
40 39 exlimdvv A ω 1 𝑜 A x y z y x ω y = A 𝑜 x z ω
41 peano2 z ω suc z ω
42 41 adantl A ω 1 𝑜 A z ω suc z ω
43 ovex A 𝑜 suc z V
44 43 a1i A ω 1 𝑜 A z ω A 𝑜 suc z V
45 2 anim1i A ω 1 𝑜 A A On 1 𝑜 A
46 ondif2 A On 2 𝑜 A On 1 𝑜 A
47 45 46 sylibr A ω 1 𝑜 A A On 2 𝑜
48 nnon suc z ω suc z On
49 41 48 syl z ω suc z On
50 oeworde A On 2 𝑜 suc z On suc z A 𝑜 suc z
51 47 49 50 syl2an A ω 1 𝑜 A z ω suc z A 𝑜 suc z
52 vex z V
53 52 sucid z suc z
54 53 a1i A ω 1 𝑜 A z ω z suc z
55 51 54 sseldd A ω 1 𝑜 A z ω z A 𝑜 suc z
56 eqidd A ω 1 𝑜 A z ω A 𝑜 suc z = A 𝑜 suc z
57 55 42 56 3jca A ω 1 𝑜 A z ω z A 𝑜 suc z suc z ω A 𝑜 suc z = A 𝑜 suc z
58 eleq2 y = A 𝑜 suc z z y z A 𝑜 suc z
59 eqeq1 y = A 𝑜 suc z y = A 𝑜 suc z A 𝑜 suc z = A 𝑜 suc z
60 58 59 3anbi13d y = A 𝑜 suc z z y suc z ω y = A 𝑜 suc z z A 𝑜 suc z suc z ω A 𝑜 suc z = A 𝑜 suc z
61 44 57 60 spcedv A ω 1 𝑜 A z ω y z y suc z ω y = A 𝑜 suc z
62 eleq1 x = suc z x ω suc z ω
63 oveq2 x = suc z A 𝑜 x = A 𝑜 suc z
64 63 eqeq2d x = suc z y = A 𝑜 x y = A 𝑜 suc z
65 62 64 3anbi23d x = suc z z y x ω y = A 𝑜 x z y suc z ω y = A 𝑜 suc z
66 65 exbidv x = suc z y z y x ω y = A 𝑜 x y z y suc z ω y = A 𝑜 suc z
67 42 61 66 spcedv A ω 1 𝑜 A z ω x y z y x ω y = A 𝑜 x
68 67 ex A ω 1 𝑜 A z ω x y z y x ω y = A 𝑜 x
69 40 68 impbid A ω 1 𝑜 A x y z y x ω y = A 𝑜 x z ω
70 29 69 bitrid A ω 1 𝑜 A z y | x ω y = A 𝑜 x z ω
71 70 eqrdv A ω 1 𝑜 A y | x ω y = A 𝑜 x = ω
72 19 71 eqtrid A ω 1 𝑜 A x ω A 𝑜 x = ω
73 17 72 eqtrd A ω 1 𝑜 A A 𝑜 ω = ω