Description: Closure of exponentiation of natural numbers. Proposition 8.17 of TakeutiZaring p. 63. Theorem 2.20 of Schloeder p. 6. (Contributed by NM, 24-Mar-2007) (Proof shortened by Andrew Salmon, 22-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | nnecl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | eleq1d | |
3 | 2 | imbi2d | |
4 | oveq2 | |
|
5 | 4 | eleq1d | |
6 | oveq2 | |
|
7 | 6 | eleq1d | |
8 | oveq2 | |
|
9 | 8 | eleq1d | |
10 | nnon | |
|
11 | oe0 | |
|
12 | 10 11 | syl | |
13 | df-1o | |
|
14 | peano1 | |
|
15 | peano2 | |
|
16 | 14 15 | ax-mp | |
17 | 13 16 | eqeltri | |
18 | 12 17 | eqeltrdi | |
19 | nnmcl | |
|
20 | 19 | expcom | |
21 | 20 | adantr | |
22 | nnesuc | |
|
23 | 22 | eleq1d | |
24 | 21 23 | sylibrd | |
25 | 24 | expcom | |
26 | 5 7 9 18 25 | finds2 | |
27 | 3 26 | vtoclga | |
28 | 27 | impcom | |