Metamath Proof Explorer


Theorem nnecl

Description: Closure of exponentiation of natural numbers. Proposition 8.17 of TakeutiZaring p. 63. Theorem 2.20 of Schloeder p. 6. (Contributed by NM, 24-Mar-2007) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion nnecl AωBωA𝑜Bω

Proof

Step Hyp Ref Expression
1 oveq2 x=BA𝑜x=A𝑜B
2 1 eleq1d x=BA𝑜xωA𝑜Bω
3 2 imbi2d x=BAωA𝑜xωAωA𝑜Bω
4 oveq2 x=A𝑜x=A𝑜
5 4 eleq1d x=A𝑜xωA𝑜ω
6 oveq2 x=yA𝑜x=A𝑜y
7 6 eleq1d x=yA𝑜xωA𝑜yω
8 oveq2 x=sucyA𝑜x=A𝑜sucy
9 8 eleq1d x=sucyA𝑜xωA𝑜sucyω
10 nnon AωAOn
11 oe0 AOnA𝑜=1𝑜
12 10 11 syl AωA𝑜=1𝑜
13 df-1o 1𝑜=suc
14 peano1 ω
15 peano2 ωsucω
16 14 15 ax-mp sucω
17 13 16 eqeltri 1𝑜ω
18 12 17 eqeltrdi AωA𝑜ω
19 nnmcl A𝑜yωAωA𝑜y𝑜Aω
20 19 expcom AωA𝑜yωA𝑜y𝑜Aω
21 20 adantr AωyωA𝑜yωA𝑜y𝑜Aω
22 nnesuc AωyωA𝑜sucy=A𝑜y𝑜A
23 22 eleq1d AωyωA𝑜sucyωA𝑜y𝑜Aω
24 21 23 sylibrd AωyωA𝑜yωA𝑜sucyω
25 24 expcom yωAωA𝑜yωA𝑜sucyω
26 5 7 9 18 25 finds2 xωAωA𝑜xω
27 3 26 vtoclga BωAωA𝑜Bω
28 27 impcom AωBωA𝑜Bω