| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 | 1 | eleq1d |  | 
						
							| 3 | 2 | imbi2d |  | 
						
							| 4 |  | oveq2 |  | 
						
							| 5 | 4 | eleq1d |  | 
						
							| 6 |  | oveq2 |  | 
						
							| 7 | 6 | eleq1d |  | 
						
							| 8 |  | oveq2 |  | 
						
							| 9 | 8 | eleq1d |  | 
						
							| 10 |  | nnon |  | 
						
							| 11 |  | oe0 |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 |  | df-1o |  | 
						
							| 14 |  | peano1 |  | 
						
							| 15 |  | peano2 |  | 
						
							| 16 | 14 15 | ax-mp |  | 
						
							| 17 | 13 16 | eqeltri |  | 
						
							| 18 | 12 17 | eqeltrdi |  | 
						
							| 19 |  | nnmcl |  | 
						
							| 20 | 19 | expcom |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 |  | nnesuc |  | 
						
							| 23 | 22 | eleq1d |  | 
						
							| 24 | 21 23 | sylibrd |  | 
						
							| 25 | 24 | expcom |  | 
						
							| 26 | 5 7 9 18 25 | finds2 |  | 
						
							| 27 | 3 26 | vtoclga |  | 
						
							| 28 | 27 | impcom |  |