Metamath Proof Explorer


Theorem oe0

Description: Ordinal exponentiation with zero exponent. Definition 8.30 of TakeutiZaring p. 67. Definition 2.6 of Schloeder p. 4. (Contributed by NM, 31-Dec-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion oe0 AOnA𝑜=1𝑜

Proof

Step Hyp Ref Expression
1 oveq1 A=A𝑜=𝑜
2 oe0m0 𝑜=1𝑜
3 1 2 eqtrdi A=A𝑜=1𝑜
4 3 adantl AOnA=A𝑜=1𝑜
5 0elon On
6 oevn0 AOnOnAA𝑜=recxVx𝑜A1𝑜
7 5 6 mpanl2 AOnAA𝑜=recxVx𝑜A1𝑜
8 1oex 1𝑜V
9 8 rdg0 recxVx𝑜A1𝑜=1𝑜
10 7 9 eqtrdi AOnAA𝑜=1𝑜
11 10 adantll AOnAOnAA𝑜=1𝑜
12 4 11 oe0lem AOnAOnA𝑜=1𝑜
13 12 anidms AOnA𝑜=1𝑜