Metamath Proof Explorer


Theorem rdg0

Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995) (Revised by Mario Carneiro, 14-Nov-2014)

Ref Expression
Hypothesis rdg.1 AV
Assertion rdg0 recFA=A

Proof

Step Hyp Ref Expression
1 rdg.1 AV
2 rdgdmlim LimdomrecFA
3 limomss LimdomrecFAωdomrecFA
4 2 3 ax-mp ωdomrecFA
5 peano1 ω
6 4 5 sselii domrecFA
7 eqid xVifx=AifLimdomxranxFxdomx=xVifx=AifLimdomxranxFxdomx
8 rdgvalg ydomrecFArecFAy=xVifx=AifLimdomxranxFxdomxrecFAy
9 7 8 1 tz7.44-1 domrecFArecFA=A
10 6 9 ax-mp recFA=A