| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rdg.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | rdgdmlim | ⊢ Lim  dom  rec ( 𝐹 ,  𝐴 ) | 
						
							| 3 |  | limomss | ⊢ ( Lim  dom  rec ( 𝐹 ,  𝐴 )  →  ω  ⊆  dom  rec ( 𝐹 ,  𝐴 ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ω  ⊆  dom  rec ( 𝐹 ,  𝐴 ) | 
						
							| 5 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 6 | 4 5 | sselii | ⊢ ∅  ∈  dom  rec ( 𝐹 ,  𝐴 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑥  ∈  V  ↦  if ( 𝑥  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑥 ,  ∪  ran  𝑥 ,  ( 𝐹 ‘ ( 𝑥 ‘ ∪  dom  𝑥 ) ) ) ) )  =  ( 𝑥  ∈  V  ↦  if ( 𝑥  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑥 ,  ∪  ran  𝑥 ,  ( 𝐹 ‘ ( 𝑥 ‘ ∪  dom  𝑥 ) ) ) ) ) | 
						
							| 8 |  | rdgvalg | ⊢ ( 𝑦  ∈  dom  rec ( 𝐹 ,  𝐴 )  →  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑦 )  =  ( ( 𝑥  ∈  V  ↦  if ( 𝑥  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑥 ,  ∪  ran  𝑥 ,  ( 𝐹 ‘ ( 𝑥 ‘ ∪  dom  𝑥 ) ) ) ) ) ‘ ( rec ( 𝐹 ,  𝐴 )  ↾  𝑦 ) ) ) | 
						
							| 9 | 7 8 1 | tz7.44-1 | ⊢ ( ∅  ∈  dom  rec ( 𝐹 ,  𝐴 )  →  ( rec ( 𝐹 ,  𝐴 ) ‘ ∅ )  =  𝐴 ) | 
						
							| 10 | 6 9 | ax-mp | ⊢ ( rec ( 𝐹 ,  𝐴 ) ‘ ∅ )  =  𝐴 |