Step |
Hyp |
Ref |
Expression |
1 |
|
rdg.1 |
⊢ 𝐴 ∈ V |
2 |
|
rdgdmlim |
⊢ Lim dom rec ( 𝐹 , 𝐴 ) |
3 |
|
limomss |
⊢ ( Lim dom rec ( 𝐹 , 𝐴 ) → ω ⊆ dom rec ( 𝐹 , 𝐴 ) ) |
4 |
2 3
|
ax-mp |
⊢ ω ⊆ dom rec ( 𝐹 , 𝐴 ) |
5 |
|
peano1 |
⊢ ∅ ∈ ω |
6 |
4 5
|
sselii |
⊢ ∅ ∈ dom rec ( 𝐹 , 𝐴 ) |
7 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) = ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) |
8 |
|
rdgvalg |
⊢ ( 𝑦 ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ 𝑦 ) ) ) |
9 |
7 8 1
|
tz7.44-1 |
⊢ ( ∅ ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 ) |
10 |
6 9
|
ax-mp |
⊢ ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 |