Metamath Proof Explorer


Theorem rdg0

Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995) (Revised by Mario Carneiro, 14-Nov-2014)

Ref Expression
Hypothesis rdg.1 𝐴 ∈ V
Assertion rdg0 ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴

Proof

Step Hyp Ref Expression
1 rdg.1 𝐴 ∈ V
2 rdgdmlim Lim dom rec ( 𝐹 , 𝐴 )
3 limomss ( Lim dom rec ( 𝐹 , 𝐴 ) → ω ⊆ dom rec ( 𝐹 , 𝐴 ) )
4 2 3 ax-mp ω ⊆ dom rec ( 𝐹 , 𝐴 )
5 peano1 ∅ ∈ ω
6 4 5 sselii ∅ ∈ dom rec ( 𝐹 , 𝐴 )
7 eqid ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ran 𝑥 , ( 𝐹 ‘ ( 𝑥 dom 𝑥 ) ) ) ) ) = ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ran 𝑥 , ( 𝐹 ‘ ( 𝑥 dom 𝑥 ) ) ) ) )
8 rdgvalg ( 𝑦 ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ran 𝑥 , ( 𝐹 ‘ ( 𝑥 dom 𝑥 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ 𝑦 ) ) )
9 7 8 1 tz7.44-1 ( ∅ ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 )
10 6 9 ax-mp ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴