| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tz7.44.1 |
⊢ 𝐺 = ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) |
| 2 |
|
tz7.44.2 |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) ) |
| 3 |
|
tz7.44-1.3 |
⊢ 𝐴 ∈ V |
| 4 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ∅ ) ) |
| 5 |
|
reseq2 |
⊢ ( 𝑦 = ∅ → ( 𝐹 ↾ 𝑦 ) = ( 𝐹 ↾ ∅ ) ) |
| 6 |
|
res0 |
⊢ ( 𝐹 ↾ ∅ ) = ∅ |
| 7 |
5 6
|
eqtrdi |
⊢ ( 𝑦 = ∅ → ( 𝐹 ↾ 𝑦 ) = ∅ ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑦 = ∅ → ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) = ( 𝐺 ‘ ∅ ) ) |
| 9 |
4 8
|
eqeq12d |
⊢ ( 𝑦 = ∅ → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) ↔ ( 𝐹 ‘ ∅ ) = ( 𝐺 ‘ ∅ ) ) ) |
| 10 |
9 2
|
vtoclga |
⊢ ( ∅ ∈ 𝑋 → ( 𝐹 ‘ ∅ ) = ( 𝐺 ‘ ∅ ) ) |
| 11 |
|
0ex |
⊢ ∅ ∈ V |
| 12 |
|
iftrue |
⊢ ( 𝑥 = ∅ → if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) = 𝐴 ) |
| 13 |
12 1 3
|
fvmpt |
⊢ ( ∅ ∈ V → ( 𝐺 ‘ ∅ ) = 𝐴 ) |
| 14 |
11 13
|
ax-mp |
⊢ ( 𝐺 ‘ ∅ ) = 𝐴 |
| 15 |
10 14
|
eqtrdi |
⊢ ( ∅ ∈ 𝑋 → ( 𝐹 ‘ ∅ ) = 𝐴 ) |