Step |
Hyp |
Ref |
Expression |
1 |
|
tz7.44.1 |
|- G = ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) ) ) |
2 |
|
tz7.44.2 |
|- ( y e. X -> ( F ` y ) = ( G ` ( F |` y ) ) ) |
3 |
|
tz7.44-1.3 |
|- A e. _V |
4 |
|
fveq2 |
|- ( y = (/) -> ( F ` y ) = ( F ` (/) ) ) |
5 |
|
reseq2 |
|- ( y = (/) -> ( F |` y ) = ( F |` (/) ) ) |
6 |
|
res0 |
|- ( F |` (/) ) = (/) |
7 |
5 6
|
eqtrdi |
|- ( y = (/) -> ( F |` y ) = (/) ) |
8 |
7
|
fveq2d |
|- ( y = (/) -> ( G ` ( F |` y ) ) = ( G ` (/) ) ) |
9 |
4 8
|
eqeq12d |
|- ( y = (/) -> ( ( F ` y ) = ( G ` ( F |` y ) ) <-> ( F ` (/) ) = ( G ` (/) ) ) ) |
10 |
9 2
|
vtoclga |
|- ( (/) e. X -> ( F ` (/) ) = ( G ` (/) ) ) |
11 |
|
0ex |
|- (/) e. _V |
12 |
|
iftrue |
|- ( x = (/) -> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) ) = A ) |
13 |
12 1 3
|
fvmpt |
|- ( (/) e. _V -> ( G ` (/) ) = A ) |
14 |
11 13
|
ax-mp |
|- ( G ` (/) ) = A |
15 |
10 14
|
eqtrdi |
|- ( (/) e. X -> ( F ` (/) ) = A ) |