| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rdg | ⊢ rec ( 𝐹 ,  𝐴 )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 2 | 1 | reseq1i | ⊢ ( rec ( 𝐹 ,  𝐴 )  ↾  𝐵 )  =  ( recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) )  ↾  𝐵 ) | 
						
							| 3 |  | rdglem1 | ⊢ { 𝑤  ∣  ∃ 𝑦  ∈  On ( 𝑤  Fn  𝑦  ∧  ∀ 𝑣  ∈  𝑦 ( 𝑤 ‘ 𝑣 )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( 𝑤  ↾  𝑣 ) ) ) }  =  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( 𝑓  ↾  𝑦 ) ) ) } | 
						
							| 4 | 3 | tfrlem9a | ⊢ ( 𝐵  ∈  dom  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) )  →  ( recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) )  ↾  𝐵 )  ∈  V ) | 
						
							| 5 | 1 | dmeqi | ⊢ dom  rec ( 𝐹 ,  𝐴 )  =  dom  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 6 | 4 5 | eleq2s | ⊢ ( 𝐵  ∈  dom  rec ( 𝐹 ,  𝐴 )  →  ( recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) )  ↾  𝐵 )  ∈  V ) | 
						
							| 7 | 2 6 | eqeltrid | ⊢ ( 𝐵  ∈  dom  rec ( 𝐹 ,  𝐴 )  →  ( rec ( 𝐹 ,  𝐴 )  ↾  𝐵 )  ∈  V ) |