| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rdgdmlim | ⊢ Lim  dom  rec ( 𝐹 ,  𝐴 ) | 
						
							| 2 |  | limsuc | ⊢ ( Lim  dom  rec ( 𝐹 ,  𝐴 )  →  ( 𝐵  ∈  dom  rec ( 𝐹 ,  𝐴 )  ↔  suc  𝐵  ∈  dom  rec ( 𝐹 ,  𝐴 ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( 𝐵  ∈  dom  rec ( 𝐹 ,  𝐴 )  ↔  suc  𝐵  ∈  dom  rec ( 𝐹 ,  𝐴 ) ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑥  ∈  V  ↦  if ( 𝑥  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑥 ,  ∪  ran  𝑥 ,  ( 𝐹 ‘ ( 𝑥 ‘ ∪  dom  𝑥 ) ) ) ) )  =  ( 𝑥  ∈  V  ↦  if ( 𝑥  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑥 ,  ∪  ran  𝑥 ,  ( 𝐹 ‘ ( 𝑥 ‘ ∪  dom  𝑥 ) ) ) ) ) | 
						
							| 5 |  | rdgvalg | ⊢ ( 𝑦  ∈  dom  rec ( 𝐹 ,  𝐴 )  →  ( rec ( 𝐹 ,  𝐴 ) ‘ 𝑦 )  =  ( ( 𝑥  ∈  V  ↦  if ( 𝑥  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑥 ,  ∪  ran  𝑥 ,  ( 𝐹 ‘ ( 𝑥 ‘ ∪  dom  𝑥 ) ) ) ) ) ‘ ( rec ( 𝐹 ,  𝐴 )  ↾  𝑦 ) ) ) | 
						
							| 6 |  | rdgseg | ⊢ ( 𝑦  ∈  dom  rec ( 𝐹 ,  𝐴 )  →  ( rec ( 𝐹 ,  𝐴 )  ↾  𝑦 )  ∈  V ) | 
						
							| 7 |  | rdgfun | ⊢ Fun  rec ( 𝐹 ,  𝐴 ) | 
						
							| 8 |  | funfn | ⊢ ( Fun  rec ( 𝐹 ,  𝐴 )  ↔  rec ( 𝐹 ,  𝐴 )  Fn  dom  rec ( 𝐹 ,  𝐴 ) ) | 
						
							| 9 | 7 8 | mpbi | ⊢ rec ( 𝐹 ,  𝐴 )  Fn  dom  rec ( 𝐹 ,  𝐴 ) | 
						
							| 10 |  | limord | ⊢ ( Lim  dom  rec ( 𝐹 ,  𝐴 )  →  Ord  dom  rec ( 𝐹 ,  𝐴 ) ) | 
						
							| 11 | 1 10 | ax-mp | ⊢ Ord  dom  rec ( 𝐹 ,  𝐴 ) | 
						
							| 12 | 4 5 6 9 11 | tz7.44-2 | ⊢ ( suc  𝐵  ∈  dom  rec ( 𝐹 ,  𝐴 )  →  ( rec ( 𝐹 ,  𝐴 ) ‘ suc  𝐵 )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  𝐴 ) ‘ 𝐵 ) ) ) | 
						
							| 13 | 3 12 | sylbi | ⊢ ( 𝐵  ∈  dom  rec ( 𝐹 ,  𝐴 )  →  ( rec ( 𝐹 ,  𝐴 ) ‘ suc  𝐵 )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  𝐴 ) ‘ 𝐵 ) ) ) |