Metamath Proof Explorer


Theorem rdgsuc

Description: The value of the recursive definition generator at a successor. (Contributed by NM, 23-Apr-1995) (Revised by Mario Carneiro, 14-Nov-2014)

Ref Expression
Assertion rdgsuc ( 𝐵 ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 rdgfnon rec ( 𝐹 , 𝐴 ) Fn On
2 1 fndmi dom rec ( 𝐹 , 𝐴 ) = On
3 2 eleq2i ( 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) ↔ 𝐵 ∈ On )
4 rdgsucg ( 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) )
5 3 4 sylbir ( 𝐵 ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) )