Description: The value of the recursive definition generator at a successor. (Contributed by NM, 23-Apr-1995) (Revised by Mario Carneiro, 14-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rdgsuc | ⊢ ( 𝐵 ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfnon | ⊢ rec ( 𝐹 , 𝐴 ) Fn On | |
2 | 1 | fndmi | ⊢ dom rec ( 𝐹 , 𝐴 ) = On |
3 | 2 | eleq2i | ⊢ ( 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) ↔ 𝐵 ∈ On ) |
4 | rdgsucg | ⊢ ( 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) ) | |
5 | 3 4 | sylbir | ⊢ ( 𝐵 ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝐵 ) = ( 𝐹 ‘ ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) ) ) |