Metamath Proof Explorer


Theorem rdgfun

Description: The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion rdgfun Fun rec ( 𝐹 , 𝐴 )

Proof

Step Hyp Ref Expression
1 df-rdg rec ( 𝐹 , 𝐴 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) )
2 1 tfr1a ( Fun rec ( 𝐹 , 𝐴 ) ∧ Lim dom rec ( 𝐹 , 𝐴 ) )
3 2 simpli Fun rec ( 𝐹 , 𝐴 )