Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of TakeutiZaring p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | limomss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord | |
|
2 | ordeleqon | |
|
3 | elom | |
|
4 | 3 | simprbi | |
5 | limeq | |
|
6 | eleq2 | |
|
7 | 5 6 | imbi12d | |
8 | 7 | spcgv | |
9 | 4 8 | syl5 | |
10 | 9 | com23 | |
11 | 10 | imp | |
12 | 11 | ssrdv | |
13 | 12 | ex | |
14 | omsson | |
|
15 | sseq2 | |
|
16 | 14 15 | mpbiri | |
17 | 16 | a1d | |
18 | 13 17 | jaoi | |
19 | 2 18 | sylbi | |
20 | 1 19 | mpcom | |