Metamath Proof Explorer


Theorem limomss

Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of TakeutiZaring p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003)

Ref Expression
Assertion limomss LimAωA

Proof

Step Hyp Ref Expression
1 limord LimAOrdA
2 ordeleqon OrdAAOnA=On
3 elom xωxOnyLimyxy
4 3 simprbi xωyLimyxy
5 limeq y=ALimyLimA
6 eleq2 y=AxyxA
7 5 6 imbi12d y=ALimyxyLimAxA
8 7 spcgv AOnyLimyxyLimAxA
9 4 8 syl5 AOnxωLimAxA
10 9 com23 AOnLimAxωxA
11 10 imp AOnLimAxωxA
12 11 ssrdv AOnLimAωA
13 12 ex AOnLimAωA
14 omsson ωOn
15 sseq2 A=OnωAωOn
16 14 15 mpbiri A=OnωA
17 16 a1d A=OnLimAωA
18 13 17 jaoi AOnA=OnLimAωA
19 2 18 sylbi OrdALimAωA
20 1 19 mpcom LimAωA