| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq12 |
|
| 2 |
|
oe0m0 |
|
| 3 |
1 2
|
eqtrdi |
|
| 4 |
|
fveq2 |
|
| 5 |
|
1oex |
|
| 6 |
5
|
rdg0 |
|
| 7 |
4 6
|
eqtrdi |
|
| 8 |
|
inteq |
|
| 9 |
|
int0 |
|
| 10 |
8 9
|
eqtrdi |
|
| 11 |
7 10
|
ineq12d |
|
| 12 |
|
inv1 |
|
| 13 |
12
|
a1i |
|
| 14 |
11 13
|
sylan9eqr |
|
| 15 |
3 14
|
eqtr4d |
|
| 16 |
|
oveq1 |
|
| 17 |
|
oe0m1 |
|
| 18 |
17
|
biimpa |
|
| 19 |
16 18
|
sylan9eqr |
|
| 20 |
19
|
an32s |
|
| 21 |
|
int0el |
|
| 22 |
21
|
ineq2d |
|
| 23 |
|
in0 |
|
| 24 |
22 23
|
eqtrdi |
|
| 25 |
24
|
adantl |
|
| 26 |
20 25
|
eqtr4d |
|
| 27 |
15 26
|
oe0lem |
|
| 28 |
|
inteq |
|
| 29 |
28 9
|
eqtrdi |
|
| 30 |
29
|
difeq2d |
|
| 31 |
|
difid |
|
| 32 |
30 31
|
eqtrdi |
|
| 33 |
32
|
uneq2d |
|
| 34 |
|
uncom |
|
| 35 |
|
un0 |
|
| 36 |
33 34 35
|
3eqtr3g |
|
| 37 |
36
|
adantl |
|
| 38 |
37
|
ineq2d |
|
| 39 |
27 38
|
eqtr4d |
|
| 40 |
|
oevn0 |
|
| 41 |
|
int0el |
|
| 42 |
41
|
difeq2d |
|
| 43 |
|
dif0 |
|
| 44 |
42 43
|
eqtrdi |
|
| 45 |
44
|
uneq2d |
|
| 46 |
|
unv |
|
| 47 |
45 34 46
|
3eqtr3g |
|
| 48 |
47
|
adantl |
|
| 49 |
48
|
ineq2d |
|
| 50 |
|
inv1 |
|
| 51 |
49 50
|
eqtr2di |
|
| 52 |
40 51
|
eqtrd |
|
| 53 |
39 52
|
oe0lem |
|