Metamath Proof Explorer


Theorem limom

Description: Omega is a limit ordinal. Theorem 2.8 of BellMachover p. 473. Theorem 1.23 of Schloeder p. 4. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995) (Proof shortened by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion limom Limω

Proof

Step Hyp Ref Expression
1 ordom Ordω
2 ordeleqon OrdωωOnω=On
3 ordirr Ordω¬ωω
4 1 3 ax-mp ¬ωω
5 elom ωωωOnxLimxωx
6 5 baib ωOnωωxLimxωx
7 4 6 mtbii ωOn¬xLimxωx
8 limomss Limxωx
9 limord LimxOrdx
10 ordsseleq OrdωOrdxωxωxω=x
11 1 9 10 sylancr Limxωxωxω=x
12 8 11 mpbid Limxωxω=x
13 12 ord Limx¬ωxω=x
14 limeq ω=xLimωLimx
15 14 biimprcd Limxω=xLimω
16 13 15 syld Limx¬ωxLimω
17 16 con1d Limx¬Limωωx
18 17 com12 ¬LimωLimxωx
19 18 alrimiv ¬LimωxLimxωx
20 7 19 nsyl2 ωOnLimω
21 limon LimOn
22 limeq ω=OnLimωLimOn
23 21 22 mpbiri ω=OnLimω
24 20 23 jaoi ωOnω=OnLimω
25 2 24 sylbi OrdωLimω
26 1 25 ax-mp Limω