Description: Omega is a limit ordinal. Theorem 2.8 of BellMachover p. 473. Theorem 1.23 of Schloeder p. 4. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995) (Proof shortened by Mario Carneiro, 2-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | limom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom | |
|
2 | ordeleqon | |
|
3 | ordirr | |
|
4 | 1 3 | ax-mp | |
5 | elom | |
|
6 | 5 | baib | |
7 | 4 6 | mtbii | |
8 | limomss | |
|
9 | limord | |
|
10 | ordsseleq | |
|
11 | 1 9 10 | sylancr | |
12 | 8 11 | mpbid | |
13 | 12 | ord | |
14 | limeq | |
|
15 | 14 | biimprcd | |
16 | 13 15 | syld | |
17 | 16 | con1d | |
18 | 17 | com12 | |
19 | 18 | alrimiv | |
20 | 7 19 | nsyl2 | |
21 | limon | |
|
22 | limeq | |
|
23 | 21 22 | mpbiri | |
24 | 20 23 | jaoi | |
25 | 2 24 | sylbi | |
26 | 1 25 | ax-mp | |