Metamath Proof Explorer


Theorem limom

Description: Omega is a limit ordinal. Theorem 2.8 of BellMachover p. 473. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995) (Proof shortened by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion limom Lim ω

Proof

Step Hyp Ref Expression
1 ordom Ord ω
2 ordeleqon Ord ω ω On ω = On
3 ordirr Ord ω ¬ ω ω
4 1 3 ax-mp ¬ ω ω
5 elom ω ω ω On x Lim x ω x
6 5 baib ω On ω ω x Lim x ω x
7 4 6 mtbii ω On ¬ x Lim x ω x
8 limomss Lim x ω x
9 limord Lim x Ord x
10 ordsseleq Ord ω Ord x ω x ω x ω = x
11 1 9 10 sylancr Lim x ω x ω x ω = x
12 8 11 mpbid Lim x ω x ω = x
13 12 ord Lim x ¬ ω x ω = x
14 limeq ω = x Lim ω Lim x
15 14 biimprcd Lim x ω = x Lim ω
16 13 15 syld Lim x ¬ ω x Lim ω
17 16 con1d Lim x ¬ Lim ω ω x
18 17 com12 ¬ Lim ω Lim x ω x
19 18 alrimiv ¬ Lim ω x Lim x ω x
20 7 19 nsyl2 ω On Lim ω
21 limon Lim On
22 limeq ω = On Lim ω Lim On
23 21 22 mpbiri ω = On Lim ω
24 20 23 jaoi ω On ω = On Lim ω
25 2 24 sylbi Ord ω Lim ω
26 1 25 ax-mp Lim ω