Description: Two ways to double an ordinal. (Contributed by RP, 3-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | om2 | |- ( A e. On -> ( A +o A ) = ( A .o 2o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o | |- 2o = suc 1o |
|
| 2 | 1 | oveq2i | |- ( A .o 2o ) = ( A .o suc 1o ) |
| 3 | 1on | |- 1o e. On |
|
| 4 | omsuc | |- ( ( A e. On /\ 1o e. On ) -> ( A .o suc 1o ) = ( ( A .o 1o ) +o A ) ) |
|
| 5 | 3 4 | mpan2 | |- ( A e. On -> ( A .o suc 1o ) = ( ( A .o 1o ) +o A ) ) |
| 6 | om1 | |- ( A e. On -> ( A .o 1o ) = A ) |
|
| 7 | 6 | oveq1d | |- ( A e. On -> ( ( A .o 1o ) +o A ) = ( A +o A ) ) |
| 8 | 5 7 | eqtrd | |- ( A e. On -> ( A .o suc 1o ) = ( A +o A ) ) |
| 9 | 2 8 | eqtr2id | |- ( A e. On -> ( A +o A ) = ( A .o 2o ) ) |