Metamath Proof Explorer


Theorem om2

Description: Two ways to double an ordinal. (Contributed by RP, 3-Jan-2025)

Ref Expression
Assertion om2
|- ( A e. On -> ( A +o A ) = ( A .o 2o ) )

Proof

Step Hyp Ref Expression
1 df-2o
 |-  2o = suc 1o
2 1 oveq2i
 |-  ( A .o 2o ) = ( A .o suc 1o )
3 1on
 |-  1o e. On
4 omsuc
 |-  ( ( A e. On /\ 1o e. On ) -> ( A .o suc 1o ) = ( ( A .o 1o ) +o A ) )
5 3 4 mpan2
 |-  ( A e. On -> ( A .o suc 1o ) = ( ( A .o 1o ) +o A ) )
6 om1
 |-  ( A e. On -> ( A .o 1o ) = A )
7 6 oveq1d
 |-  ( A e. On -> ( ( A .o 1o ) +o A ) = ( A +o A ) )
8 5 7 eqtrd
 |-  ( A e. On -> ( A .o suc 1o ) = ( A +o A ) )
9 2 8 eqtr2id
 |-  ( A e. On -> ( A +o A ) = ( A .o 2o ) )