Metamath Proof Explorer


Theorem om2

Description: Two ways to double an ordinal. (Contributed by RP, 3-Jan-2025)

Ref Expression
Assertion om2 ( 𝐴 ∈ On → ( 𝐴 +o 𝐴 ) = ( 𝐴 ·o 2o ) )

Proof

Step Hyp Ref Expression
1 df-2o 2o = suc 1o
2 1 oveq2i ( 𝐴 ·o 2o ) = ( 𝐴 ·o suc 1o )
3 1on 1o ∈ On
4 omsuc ( ( 𝐴 ∈ On ∧ 1o ∈ On ) → ( 𝐴 ·o suc 1o ) = ( ( 𝐴 ·o 1o ) +o 𝐴 ) )
5 3 4 mpan2 ( 𝐴 ∈ On → ( 𝐴 ·o suc 1o ) = ( ( 𝐴 ·o 1o ) +o 𝐴 ) )
6 om1 ( 𝐴 ∈ On → ( 𝐴 ·o 1o ) = 𝐴 )
7 6 oveq1d ( 𝐴 ∈ On → ( ( 𝐴 ·o 1o ) +o 𝐴 ) = ( 𝐴 +o 𝐴 ) )
8 5 7 eqtrd ( 𝐴 ∈ On → ( 𝐴 ·o suc 1o ) = ( 𝐴 +o 𝐴 ) )
9 2 8 eqtr2id ( 𝐴 ∈ On → ( 𝐴 +o 𝐴 ) = ( 𝐴 ·o 2o ) )