| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2 |
⊢ ( 𝐵 ∈ On → ( 𝐵 +o 𝐵 ) = ( 𝐵 ·o 2o ) ) |
| 2 |
1
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 𝐵 +o 𝐵 ) = ( 𝐵 ·o 2o ) ) |
| 3 |
|
2on |
⊢ 2o ∈ On |
| 4 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 2o ∈ On ) |
| 5 |
|
simpl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ∈ On ) |
| 6 |
|
simpr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐵 ∈ On ) |
| 7 |
4 5 6
|
3jca |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) |
| 9 |
|
df-2o |
⊢ 2o = suc 1o |
| 10 |
9
|
a1i |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → 2o = suc 1o ) |
| 11 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → 1o ∈ 𝐴 ) |
| 12 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord 𝐴 ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → Ord 𝐴 ) |
| 15 |
11 14
|
jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 1o ∈ 𝐴 ∧ Ord 𝐴 ) ) |
| 16 |
|
ordelsuc |
⊢ ( ( 1o ∈ 𝐴 ∧ Ord 𝐴 ) → ( 1o ∈ 𝐴 ↔ suc 1o ⊆ 𝐴 ) ) |
| 17 |
16
|
biimpd |
⊢ ( ( 1o ∈ 𝐴 ∧ Ord 𝐴 ) → ( 1o ∈ 𝐴 → suc 1o ⊆ 𝐴 ) ) |
| 18 |
15 11 17
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → suc 1o ⊆ 𝐴 ) |
| 19 |
10 18
|
eqsstrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → 2o ⊆ 𝐴 ) |
| 20 |
|
omwordi |
⊢ ( ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 2o ⊆ 𝐴 → ( 𝐵 ·o 2o ) ⊆ ( 𝐵 ·o 𝐴 ) ) ) |
| 21 |
8 19 20
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 𝐵 ·o 2o ) ⊆ ( 𝐵 ·o 𝐴 ) ) |
| 22 |
2 21
|
eqsstrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 𝐵 +o 𝐵 ) ⊆ ( 𝐵 ·o 𝐴 ) ) |
| 23 |
6 6
|
jca |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) ) |
| 24 |
|
simpr |
⊢ ( ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) |
| 25 |
|
oaordi |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 +o 𝐵 ) ) ) |
| 26 |
25
|
imp |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 +o 𝐵 ) ) |
| 27 |
23 24 26
|
syl2an |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 +o 𝐵 ) ) |
| 28 |
22 27
|
sseldd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 ·o 𝐴 ) ) |
| 29 |
28
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 ·o 𝐴 ) ) ) |