Metamath Proof Explorer


Theorem oaltom

Description: Multiplication eventually dominates addition. (Contributed by RP, 3-Jan-2025)

Ref Expression
Assertion oaltom ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 1o𝐴𝐴𝐵 ) → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 ·o 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 om2 ( 𝐵 ∈ On → ( 𝐵 +o 𝐵 ) = ( 𝐵 ·o 2o ) )
2 1 ad2antlr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( 𝐵 +o 𝐵 ) = ( 𝐵 ·o 2o ) )
3 2on 2o ∈ On
4 3 a1i ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 2o ∈ On )
5 simpl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ∈ On )
6 simpr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐵 ∈ On )
7 4 5 6 3jca ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) )
8 7 adantr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) )
9 df-2o 2o = suc 1o
10 9 a1i ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → 2o = suc 1o )
11 simprl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → 1o𝐴 )
12 eloni ( 𝐴 ∈ On → Ord 𝐴 )
13 12 adantr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord 𝐴 )
14 13 adantr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → Ord 𝐴 )
15 11 14 jca ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( 1o𝐴 ∧ Ord 𝐴 ) )
16 ordelsuc ( ( 1o𝐴 ∧ Ord 𝐴 ) → ( 1o𝐴 ↔ suc 1o𝐴 ) )
17 16 biimpd ( ( 1o𝐴 ∧ Ord 𝐴 ) → ( 1o𝐴 → suc 1o𝐴 ) )
18 15 11 17 sylc ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → suc 1o𝐴 )
19 10 18 eqsstrd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → 2o𝐴 )
20 omwordi ( ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 2o𝐴 → ( 𝐵 ·o 2o ) ⊆ ( 𝐵 ·o 𝐴 ) ) )
21 8 19 20 sylc ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( 𝐵 ·o 2o ) ⊆ ( 𝐵 ·o 𝐴 ) )
22 2 21 eqsstrd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( 𝐵 +o 𝐵 ) ⊆ ( 𝐵 ·o 𝐴 ) )
23 6 6 jca ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) )
24 simpr ( ( 1o𝐴𝐴𝐵 ) → 𝐴𝐵 )
25 oaordi ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 +o 𝐵 ) ) )
26 25 imp ( ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴𝐵 ) → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 +o 𝐵 ) )
27 23 24 26 syl2an ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 +o 𝐵 ) )
28 22 27 sseldd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 ·o 𝐴 ) )
29 28 ex ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 1o𝐴𝐴𝐵 ) → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 ·o 𝐴 ) ) )