Step |
Hyp |
Ref |
Expression |
1 |
|
om2 |
⊢ ( 𝐵 ∈ On → ( 𝐵 +o 𝐵 ) = ( 𝐵 ·o 2o ) ) |
2 |
1
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 𝐵 +o 𝐵 ) = ( 𝐵 ·o 2o ) ) |
3 |
|
2on |
⊢ 2o ∈ On |
4 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 2o ∈ On ) |
5 |
|
simpl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ∈ On ) |
6 |
|
simpr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐵 ∈ On ) |
7 |
4 5 6
|
3jca |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) |
9 |
|
df-2o |
⊢ 2o = suc 1o |
10 |
9
|
a1i |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → 2o = suc 1o ) |
11 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → 1o ∈ 𝐴 ) |
12 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord 𝐴 ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → Ord 𝐴 ) |
15 |
11 14
|
jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 1o ∈ 𝐴 ∧ Ord 𝐴 ) ) |
16 |
|
ordelsuc |
⊢ ( ( 1o ∈ 𝐴 ∧ Ord 𝐴 ) → ( 1o ∈ 𝐴 ↔ suc 1o ⊆ 𝐴 ) ) |
17 |
16
|
biimpd |
⊢ ( ( 1o ∈ 𝐴 ∧ Ord 𝐴 ) → ( 1o ∈ 𝐴 → suc 1o ⊆ 𝐴 ) ) |
18 |
15 11 17
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → suc 1o ⊆ 𝐴 ) |
19 |
10 18
|
eqsstrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → 2o ⊆ 𝐴 ) |
20 |
|
omwordi |
⊢ ( ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 2o ⊆ 𝐴 → ( 𝐵 ·o 2o ) ⊆ ( 𝐵 ·o 𝐴 ) ) ) |
21 |
8 19 20
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 𝐵 ·o 2o ) ⊆ ( 𝐵 ·o 𝐴 ) ) |
22 |
2 21
|
eqsstrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 𝐵 +o 𝐵 ) ⊆ ( 𝐵 ·o 𝐴 ) ) |
23 |
6 6
|
jca |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) ) |
24 |
|
simpr |
⊢ ( ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) |
25 |
|
oaordi |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 +o 𝐵 ) ) ) |
26 |
25
|
imp |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 +o 𝐵 ) ) |
27 |
23 24 26
|
syl2an |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 +o 𝐵 ) ) |
28 |
22 27
|
sseldd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 ·o 𝐴 ) ) |
29 |
28
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 +o 𝐴 ) ∈ ( 𝐵 ·o 𝐴 ) ) ) |