Metamath Proof Explorer


Theorem om2noseq0

Description: The mapping G is a one-to-one mapping from _om onto a countable sequence of surreals that will be used to show the properties of seq_s . This theorem shows the value of G at ordinal zero. Compare the series of theorems starting at om2uz0i . (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1
|- ( ph -> C e. No )
om2noseq.2
|- ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) )
Assertion om2noseq0
|- ( ph -> ( G ` (/) ) = C )

Proof

Step Hyp Ref Expression
1 om2noseq.1
 |-  ( ph -> C e. No )
2 om2noseq.2
 |-  ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) )
3 2 fveq1d
 |-  ( ph -> ( G ` (/) ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` (/) ) )
4 fr0g
 |-  ( C e. No -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` (/) ) = C )
5 1 4 syl
 |-  ( ph -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` (/) ) = C )
6 3 5 eqtrd
 |-  ( ph -> ( G ` (/) ) = C )