| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2noseq.1 |
|- ( ph -> C e. No ) |
| 2 |
|
om2noseq.2 |
|- ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
| 3 |
|
om2noseqsuc.3 |
|- ( ph -> A e. _om ) |
| 4 |
|
ovex |
|- ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) +s 1s ) e. _V |
| 5 |
|
eqid |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) |
| 6 |
|
oveq1 |
|- ( y = x -> ( y +s 1s ) = ( x +s 1s ) ) |
| 7 |
|
oveq1 |
|- ( y = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) -> ( y +s 1s ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) +s 1s ) ) |
| 8 |
5 6 7
|
frsucmpt2 |
|- ( ( A e. _om /\ ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) +s 1s ) e. _V ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` suc A ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) +s 1s ) ) |
| 9 |
3 4 8
|
sylancl |
|- ( ph -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` suc A ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) +s 1s ) ) |
| 10 |
2
|
fveq1d |
|- ( ph -> ( G ` suc A ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` suc A ) ) |
| 11 |
2
|
fveq1d |
|- ( ph -> ( G ` A ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) ) |
| 12 |
11
|
oveq1d |
|- ( ph -> ( ( G ` A ) +s 1s ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) +s 1s ) ) |
| 13 |
9 10 12
|
3eqtr4d |
|- ( ph -> ( G ` suc A ) = ( ( G ` A ) +s 1s ) ) |