| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 |  |-  ( ph -> C e. No ) | 
						
							| 2 |  | om2noseq.2 |  |-  ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) | 
						
							| 3 |  | om2noseqsuc.3 |  |-  ( ph -> A e. _om ) | 
						
							| 4 |  | ovex |  |-  ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) +s 1s ) e. _V | 
						
							| 5 |  | eqid |  |-  ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) | 
						
							| 6 |  | oveq1 |  |-  ( y = x -> ( y +s 1s ) = ( x +s 1s ) ) | 
						
							| 7 |  | oveq1 |  |-  ( y = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) -> ( y +s 1s ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) +s 1s ) ) | 
						
							| 8 | 5 6 7 | frsucmpt2 |  |-  ( ( A e. _om /\ ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) +s 1s ) e. _V ) -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` suc A ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) +s 1s ) ) | 
						
							| 9 | 3 4 8 | sylancl |  |-  ( ph -> ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` suc A ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) +s 1s ) ) | 
						
							| 10 | 2 | fveq1d |  |-  ( ph -> ( G ` suc A ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` suc A ) ) | 
						
							| 11 | 2 | fveq1d |  |-  ( ph -> ( G ` A ) = ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( ph -> ( ( G ` A ) +s 1s ) = ( ( ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ` A ) +s 1s ) ) | 
						
							| 13 | 9 10 12 | 3eqtr4d |  |-  ( ph -> ( G ` suc A ) = ( ( G ` A ) +s 1s ) ) |