Step |
Hyp |
Ref |
Expression |
1 |
|
om2noseq.1 |
|- ( ph -> C e. No ) |
2 |
|
om2noseq.2 |
|- ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
3 |
|
om2noseq.3 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) |
4 |
|
frfnom |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) Fn _om |
5 |
2
|
fneq1d |
|- ( ph -> ( G Fn _om <-> ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) Fn _om ) ) |
6 |
4 5
|
mpbiri |
|- ( ph -> G Fn _om ) |
7 |
|
df-ima |
|- ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) |
8 |
7
|
eqcomi |
|- ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) |
9 |
2
|
rneqd |
|- ( ph -> ran G = ran ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
10 |
8 9 3
|
3eqtr4a |
|- ( ph -> ran G = Z ) |
11 |
|
df-fo |
|- ( G : _om -onto-> Z <-> ( G Fn _om /\ ran G = Z ) ) |
12 |
6 10 11
|
sylanbrc |
|- ( ph -> G : _om -onto-> Z ) |