Step |
Hyp |
Ref |
Expression |
1 |
|
om2noseq.1 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
2 |
|
om2noseq.2 |
⊢ ( 𝜑 → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
3 |
|
om2noseq.3 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) ) |
4 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) Fn ω |
5 |
2
|
fneq1d |
⊢ ( 𝜑 → ( 𝐺 Fn ω ↔ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) Fn ω ) ) |
6 |
4 5
|
mpbiri |
⊢ ( 𝜑 → 𝐺 Fn ω ) |
7 |
|
df-ima |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) |
8 |
7
|
eqcomi |
⊢ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) |
9 |
2
|
rneqd |
⊢ ( 𝜑 → ran 𝐺 = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
10 |
8 9 3
|
3eqtr4a |
⊢ ( 𝜑 → ran 𝐺 = 𝑍 ) |
11 |
|
df-fo |
⊢ ( 𝐺 : ω –onto→ 𝑍 ↔ ( 𝐺 Fn ω ∧ ran 𝐺 = 𝑍 ) ) |
12 |
6 10 11
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 : ω –onto→ 𝑍 ) |