| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 2 |  | om2noseq.2 | ⊢ ( 𝜑  →  𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 3 |  | om2noseq.3 | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  “  ω ) ) | 
						
							| 4 |  | frfnom | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω )  Fn  ω | 
						
							| 5 | 2 | fneq1d | ⊢ ( 𝜑  →  ( 𝐺  Fn  ω  ↔  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω )  Fn  ω ) ) | 
						
							| 6 | 4 5 | mpbiri | ⊢ ( 𝜑  →  𝐺  Fn  ω ) | 
						
							| 7 |  | df-ima | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  “  ω )  =  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) | 
						
							| 8 | 7 | eqcomi | ⊢ ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω )  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  “  ω ) | 
						
							| 9 | 2 | rneqd | ⊢ ( 𝜑  →  ran  𝐺  =  ran  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 10 | 8 9 3 | 3eqtr4a | ⊢ ( 𝜑  →  ran  𝐺  =  𝑍 ) | 
						
							| 11 |  | df-fo | ⊢ ( 𝐺 : ω –onto→ 𝑍  ↔  ( 𝐺  Fn  ω  ∧  ran  𝐺  =  𝑍 ) ) | 
						
							| 12 | 6 10 11 | sylanbrc | ⊢ ( 𝜑  →  𝐺 : ω –onto→ 𝑍 ) |