Database
SURREAL NUMBERS
Subsystems of surreals
Surreal recursive sequences
om2noseqfo
Next ⟩
om2noseqlt
Metamath Proof Explorer
Ascii
Unicode
Theorem
om2noseqfo
Description:
Function statement for
G
.
(Contributed by
Scott Fenton
, 18-Apr-2025)
Ref
Expression
Hypotheses
om2noseq.1
⊢
φ
→
C
∈
No
om2noseq.2
⊢
φ
→
G
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
om2noseq.3
⊢
φ
→
Z
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
ω
Assertion
om2noseqfo
⊢
φ
→
G
:
ω
⟶
onto
Z
Proof
Step
Hyp
Ref
Expression
1
om2noseq.1
⊢
φ
→
C
∈
No
2
om2noseq.2
⊢
φ
→
G
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
3
om2noseq.3
⊢
φ
→
Z
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
ω
4
frfnom
⊢
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
Fn
ω
5
2
fneq1d
⊢
φ
→
G
Fn
ω
↔
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
Fn
ω
6
4
5
mpbiri
⊢
φ
→
G
Fn
ω
7
df-ima
⊢
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
ω
=
ran
⁡
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
8
7
eqcomi
⊢
ran
⁡
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
=
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
ω
9
2
rneqd
⊢
φ
→
ran
⁡
G
=
ran
⁡
rec
⁡
x
∈
V
⟼
x
+
s
1
s
C
↾
ω
10
8
9
3
3eqtr4a
⊢
φ
→
ran
⁡
G
=
Z
11
df-fo
⊢
G
:
ω
⟶
onto
Z
↔
G
Fn
ω
∧
ran
⁡
G
=
Z
12
6
10
11
sylanbrc
⊢
φ
→
G
:
ω
⟶
onto
Z