Metamath Proof Explorer


Theorem om2noseqfo

Description: Function statement for G . (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 φ C No
om2noseq.2 φ G = rec x V x + s 1 s C ω
om2noseq.3 φ Z = rec x V x + s 1 s C ω
Assertion om2noseqfo φ G : ω onto Z

Proof

Step Hyp Ref Expression
1 om2noseq.1 φ C No
2 om2noseq.2 φ G = rec x V x + s 1 s C ω
3 om2noseq.3 φ Z = rec x V x + s 1 s C ω
4 frfnom rec x V x + s 1 s C ω Fn ω
5 2 fneq1d φ G Fn ω rec x V x + s 1 s C ω Fn ω
6 4 5 mpbiri φ G Fn ω
7 df-ima rec x V x + s 1 s C ω = ran rec x V x + s 1 s C ω
8 7 eqcomi ran rec x V x + s 1 s C ω = rec x V x + s 1 s C ω
9 2 rneqd φ ran G = ran rec x V x + s 1 s C ω
10 8 9 3 3eqtr4a φ ran G = Z
11 df-fo G : ω onto Z G Fn ω ran G = Z
12 6 10 11 sylanbrc φ G : ω onto Z