Metamath Proof Explorer


Theorem om2noseqlt

Description: Surreal less-than relation for G . (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 φ C No
om2noseq.2 φ G = rec x V x + s 1 s C ω
om2noseq.3 φ Z = rec x V x + s 1 s C ω
Assertion om2noseqlt φ A ω B ω A B G A < s G B

Proof

Step Hyp Ref Expression
1 om2noseq.1 φ C No
2 om2noseq.2 φ G = rec x V x + s 1 s C ω
3 om2noseq.3 φ Z = rec x V x + s 1 s C ω
4 nnaordex2 A ω B ω A B y ω A + 𝑜 suc y = B
5 4 adantl φ A ω B ω A B y ω A + 𝑜 suc y = B
6 suceq y = suc y = suc
7 df-1o 1 𝑜 = suc
8 6 7 eqtr4di y = suc y = 1 𝑜
9 8 oveq2d y = A + 𝑜 suc y = A + 𝑜 1 𝑜
10 9 fveq2d y = G A + 𝑜 suc y = G A + 𝑜 1 𝑜
11 10 breq2d y = G A < s G A + 𝑜 suc y G A < s G A + 𝑜 1 𝑜
12 suceq y = z suc y = suc z
13 12 oveq2d y = z A + 𝑜 suc y = A + 𝑜 suc z
14 13 fveq2d y = z G A + 𝑜 suc y = G A + 𝑜 suc z
15 14 breq2d y = z G A < s G A + 𝑜 suc y G A < s G A + 𝑜 suc z
16 suceq y = suc z suc y = suc suc z
17 16 oveq2d y = suc z A + 𝑜 suc y = A + 𝑜 suc suc z
18 17 fveq2d y = suc z G A + 𝑜 suc y = G A + 𝑜 suc suc z
19 18 breq2d y = suc z G A < s G A + 𝑜 suc y G A < s G A + 𝑜 suc suc z
20 1 2 3 om2noseqfo φ G : ω onto Z
21 fof G : ω onto Z G : ω Z
22 20 21 syl φ G : ω Z
23 3 1 noseqssno φ Z No
24 22 23 fssd φ G : ω No
25 24 ffvelcdmda φ A ω G A No
26 25 sltp1d φ A ω G A < s G A + s 1 s
27 nnon A ω A On
28 oa1suc A On A + 𝑜 1 𝑜 = suc A
29 27 28 syl A ω A + 𝑜 1 𝑜 = suc A
30 29 fveq2d A ω G A + 𝑜 1 𝑜 = G suc A
31 30 adantl φ A ω G A + 𝑜 1 𝑜 = G suc A
32 1 adantr φ A ω C No
33 2 adantr φ A ω G = rec x V x + s 1 s C ω
34 simpr φ A ω A ω
35 32 33 34 om2noseqsuc φ A ω G suc A = G A + s 1 s
36 31 35 eqtrd φ A ω G A + 𝑜 1 𝑜 = G A + s 1 s
37 26 36 breqtrrd φ A ω G A < s G A + 𝑜 1 𝑜
38 25 adantr φ A ω z ω G A < s G A + 𝑜 suc z G A No
39 24 ad2antrr φ A ω z ω G A < s G A + 𝑜 suc z G : ω No
40 peano2 z ω suc z ω
41 40 adantr z ω G A < s G A + 𝑜 suc z suc z ω
42 nnacl A ω suc z ω A + 𝑜 suc z ω
43 34 41 42 syl2an φ A ω z ω G A < s G A + 𝑜 suc z A + 𝑜 suc z ω
44 39 43 ffvelcdmd φ A ω z ω G A < s G A + 𝑜 suc z G A + 𝑜 suc z No
45 peano2 suc z ω suc suc z ω
46 40 45 syl z ω suc suc z ω
47 46 adantr z ω G A < s G A + 𝑜 suc z suc suc z ω
48 nnacl A ω suc suc z ω A + 𝑜 suc suc z ω
49 34 47 48 syl2an φ A ω z ω G A < s G A + 𝑜 suc z A + 𝑜 suc suc z ω
50 39 49 ffvelcdmd φ A ω z ω G A < s G A + 𝑜 suc z G A + 𝑜 suc suc z No
51 simprr φ A ω z ω G A < s G A + 𝑜 suc z G A < s G A + 𝑜 suc z
52 44 sltp1d φ A ω z ω G A < s G A + 𝑜 suc z G A + 𝑜 suc z < s G A + 𝑜 suc z + s 1 s
53 nnasuc A ω suc z ω A + 𝑜 suc suc z = suc A + 𝑜 suc z
54 53 fveq2d A ω suc z ω G A + 𝑜 suc suc z = G suc A + 𝑜 suc z
55 34 41 54 syl2an φ A ω z ω G A < s G A + 𝑜 suc z G A + 𝑜 suc suc z = G suc A + 𝑜 suc z
56 1 ad2antrr φ A ω z ω G A < s G A + 𝑜 suc z C No
57 2 ad2antrr φ A ω z ω G A < s G A + 𝑜 suc z G = rec x V x + s 1 s C ω
58 56 57 43 om2noseqsuc φ A ω z ω G A < s G A + 𝑜 suc z G suc A + 𝑜 suc z = G A + 𝑜 suc z + s 1 s
59 55 58 eqtrd φ A ω z ω G A < s G A + 𝑜 suc z G A + 𝑜 suc suc z = G A + 𝑜 suc z + s 1 s
60 52 59 breqtrrd φ A ω z ω G A < s G A + 𝑜 suc z G A + 𝑜 suc z < s G A + 𝑜 suc suc z
61 38 44 50 51 60 slttrd φ A ω z ω G A < s G A + 𝑜 suc z G A < s G A + 𝑜 suc suc z
62 61 expr φ A ω z ω G A < s G A + 𝑜 suc z G A < s G A + 𝑜 suc suc z
63 62 expcom z ω φ A ω G A < s G A + 𝑜 suc z G A < s G A + 𝑜 suc suc z
64 11 15 19 37 63 finds2 y ω φ A ω G A < s G A + 𝑜 suc y
65 64 impcom φ A ω y ω G A < s G A + 𝑜 suc y
66 fveq2 A + 𝑜 suc y = B G A + 𝑜 suc y = G B
67 66 breq2d A + 𝑜 suc y = B G A < s G A + 𝑜 suc y G A < s G B
68 65 67 syl5ibcom φ A ω y ω A + 𝑜 suc y = B G A < s G B
69 68 rexlimdva φ A ω y ω A + 𝑜 suc y = B G A < s G B
70 69 adantrr φ A ω B ω y ω A + 𝑜 suc y = B G A < s G B
71 5 70 sylbid φ A ω B ω A B G A < s G B