Metamath Proof Explorer


Theorem om2noseqlt

Description: Surreal less-than relation for G . (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 φ C No
om2noseq.2 φ G = rec x V x + s 1 s C ω
om2noseq.3 φ Z = rec x V x + s 1 s C ω
Assertion om2noseqlt φ A ω B ω A B G A < s G B

Proof

Step Hyp Ref Expression
1 om2noseq.1 φ C No
2 om2noseq.2 φ G = rec x V x + s 1 s C ω
3 om2noseq.3 φ Z = rec x V x + s 1 s C ω
4 nnaordex2 A ω B ω A B y ω A + 𝑜 suc y = B
5 4 adantl φ A ω B ω A B y ω A + 𝑜 suc y = B
6 suceq y = suc y = suc
7 df-1o 1 𝑜 = suc
8 6 7 eqtr4di y = suc y = 1 𝑜
9 8 oveq2d y = A + 𝑜 suc y = A + 𝑜 1 𝑜
10 9 fveq2d y = G A + 𝑜 suc y = G A + 𝑜 1 𝑜
11 10 breq2d y = G A < s G A + 𝑜 suc y G A < s G A + 𝑜 1 𝑜
12 suceq y = z suc y = suc z
13 12 oveq2d y = z A + 𝑜 suc y = A + 𝑜 suc z
14 13 fveq2d y = z G A + 𝑜 suc y = G A + 𝑜 suc z
15 14 breq2d y = z G A < s G A + 𝑜 suc y G A < s G A + 𝑜 suc z
16 suceq y = suc z suc y = suc suc z
17 16 oveq2d y = suc z A + 𝑜 suc y = A + 𝑜 suc suc z
18 17 fveq2d y = suc z G A + 𝑜 suc y = G A + 𝑜 suc suc z
19 18 breq2d y = suc z G A < s G A + 𝑜 suc y G A < s G A + 𝑜 suc suc z
20 1 2 3 om2noseqfo φ G : ω onto Z
21 fof G : ω onto Z G : ω Z
22 20 21 syl φ G : ω Z
23 3 1 noseqssno φ Z No
24 22 23 fssd φ G : ω No
25 24 ffvelcdmda φ A ω G A No
26 25 addsridd φ A ω G A + s 0 s = G A
27 0slt1s 0 s < s 1 s
28 0sno 0 s No
29 28 a1i φ A ω 0 s No
30 1sno 1 s No
31 30 a1i φ A ω 1 s No
32 29 31 25 sltadd2d φ A ω 0 s < s 1 s G A + s 0 s < s G A + s 1 s
33 27 32 mpbii φ A ω G A + s 0 s < s G A + s 1 s
34 26 33 eqbrtrrd φ A ω G A < s G A + s 1 s
35 nnon A ω A On
36 oa1suc A On A + 𝑜 1 𝑜 = suc A
37 35 36 syl A ω A + 𝑜 1 𝑜 = suc A
38 37 fveq2d A ω G A + 𝑜 1 𝑜 = G suc A
39 38 adantl φ A ω G A + 𝑜 1 𝑜 = G suc A
40 1 adantr φ A ω C No
41 2 adantr φ A ω G = rec x V x + s 1 s C ω
42 simpr φ A ω A ω
43 40 41 42 om2noseqsuc φ A ω G suc A = G A + s 1 s
44 39 43 eqtrd φ A ω G A + 𝑜 1 𝑜 = G A + s 1 s
45 34 44 breqtrrd φ A ω G A < s G A + 𝑜 1 𝑜
46 25 adantr φ A ω z ω G A < s G A + 𝑜 suc z G A No
47 24 ad2antrr φ A ω z ω G A < s G A + 𝑜 suc z G : ω No
48 peano2 z ω suc z ω
49 48 adantr z ω G A < s G A + 𝑜 suc z suc z ω
50 nnacl A ω suc z ω A + 𝑜 suc z ω
51 42 49 50 syl2an φ A ω z ω G A < s G A + 𝑜 suc z A + 𝑜 suc z ω
52 47 51 ffvelcdmd φ A ω z ω G A < s G A + 𝑜 suc z G A + 𝑜 suc z No
53 peano2 suc z ω suc suc z ω
54 48 53 syl z ω suc suc z ω
55 54 adantr z ω G A < s G A + 𝑜 suc z suc suc z ω
56 nnacl A ω suc suc z ω A + 𝑜 suc suc z ω
57 42 55 56 syl2an φ A ω z ω G A < s G A + 𝑜 suc z A + 𝑜 suc suc z ω
58 47 57 ffvelcdmd φ A ω z ω G A < s G A + 𝑜 suc z G A + 𝑜 suc suc z No
59 simprr φ A ω z ω G A < s G A + 𝑜 suc z G A < s G A + 𝑜 suc z
60 52 addsridd φ A ω z ω G A < s G A + 𝑜 suc z G A + 𝑜 suc z + s 0 s = G A + 𝑜 suc z
61 28 a1i φ A ω z ω G A < s G A + 𝑜 suc z 0 s No
62 30 a1i φ A ω z ω G A < s G A + 𝑜 suc z 1 s No
63 61 62 52 sltadd2d φ A ω z ω G A < s G A + 𝑜 suc z 0 s < s 1 s G A + 𝑜 suc z + s 0 s < s G A + 𝑜 suc z + s 1 s
64 27 63 mpbii φ A ω z ω G A < s G A + 𝑜 suc z G A + 𝑜 suc z + s 0 s < s G A + 𝑜 suc z + s 1 s
65 60 64 eqbrtrrd φ A ω z ω G A < s G A + 𝑜 suc z G A + 𝑜 suc z < s G A + 𝑜 suc z + s 1 s
66 nnasuc A ω suc z ω A + 𝑜 suc suc z = suc A + 𝑜 suc z
67 66 fveq2d A ω suc z ω G A + 𝑜 suc suc z = G suc A + 𝑜 suc z
68 42 49 67 syl2an φ A ω z ω G A < s G A + 𝑜 suc z G A + 𝑜 suc suc z = G suc A + 𝑜 suc z
69 1 ad2antrr φ A ω z ω G A < s G A + 𝑜 suc z C No
70 2 ad2antrr φ A ω z ω G A < s G A + 𝑜 suc z G = rec x V x + s 1 s C ω
71 69 70 51 om2noseqsuc φ A ω z ω G A < s G A + 𝑜 suc z G suc A + 𝑜 suc z = G A + 𝑜 suc z + s 1 s
72 68 71 eqtrd φ A ω z ω G A < s G A + 𝑜 suc z G A + 𝑜 suc suc z = G A + 𝑜 suc z + s 1 s
73 65 72 breqtrrd φ A ω z ω G A < s G A + 𝑜 suc z G A + 𝑜 suc z < s G A + 𝑜 suc suc z
74 46 52 58 59 73 slttrd φ A ω z ω G A < s G A + 𝑜 suc z G A < s G A + 𝑜 suc suc z
75 74 expr φ A ω z ω G A < s G A + 𝑜 suc z G A < s G A + 𝑜 suc suc z
76 75 expcom z ω φ A ω G A < s G A + 𝑜 suc z G A < s G A + 𝑜 suc suc z
77 11 15 19 45 76 finds2 y ω φ A ω G A < s G A + 𝑜 suc y
78 77 impcom φ A ω y ω G A < s G A + 𝑜 suc y
79 fveq2 A + 𝑜 suc y = B G A + 𝑜 suc y = G B
80 79 breq2d A + 𝑜 suc y = B G A < s G A + 𝑜 suc y G A < s G B
81 78 80 syl5ibcom φ A ω y ω A + 𝑜 suc y = B G A < s G B
82 81 rexlimdva φ A ω y ω A + 𝑜 suc y = B G A < s G B
83 82 adantrr φ A ω B ω y ω A + 𝑜 suc y = B G A < s G B
84 5 83 sylbid φ A ω B ω A B G A < s G B