Step |
Hyp |
Ref |
Expression |
1 |
|
om2noseq.1 |
|
2 |
|
om2noseq.2 |
|
3 |
|
om2noseq.3 |
|
4 |
|
nnaordex2 |
|
5 |
4
|
adantl |
|
6 |
|
suceq |
|
7 |
|
df-1o |
|
8 |
6 7
|
eqtr4di |
|
9 |
8
|
oveq2d |
|
10 |
9
|
fveq2d |
|
11 |
10
|
breq2d |
|
12 |
|
suceq |
|
13 |
12
|
oveq2d |
|
14 |
13
|
fveq2d |
|
15 |
14
|
breq2d |
|
16 |
|
suceq |
|
17 |
16
|
oveq2d |
|
18 |
17
|
fveq2d |
|
19 |
18
|
breq2d |
|
20 |
1 2 3
|
om2noseqfo |
|
21 |
|
fof |
|
22 |
20 21
|
syl |
|
23 |
3 1
|
noseqssno |
|
24 |
22 23
|
fssd |
|
25 |
24
|
ffvelcdmda |
|
26 |
25
|
addsridd |
|
27 |
|
0slt1s |
|
28 |
|
0sno |
|
29 |
28
|
a1i |
|
30 |
|
1sno |
|
31 |
30
|
a1i |
|
32 |
29 31 25
|
sltadd2d |
|
33 |
27 32
|
mpbii |
|
34 |
26 33
|
eqbrtrrd |
|
35 |
|
nnon |
|
36 |
|
oa1suc |
|
37 |
35 36
|
syl |
|
38 |
37
|
fveq2d |
|
39 |
38
|
adantl |
|
40 |
1
|
adantr |
|
41 |
2
|
adantr |
|
42 |
|
simpr |
|
43 |
40 41 42
|
om2noseqsuc |
|
44 |
39 43
|
eqtrd |
|
45 |
34 44
|
breqtrrd |
|
46 |
25
|
adantr |
|
47 |
24
|
ad2antrr |
|
48 |
|
peano2 |
|
49 |
48
|
adantr |
|
50 |
|
nnacl |
|
51 |
42 49 50
|
syl2an |
|
52 |
47 51
|
ffvelcdmd |
|
53 |
|
peano2 |
|
54 |
48 53
|
syl |
|
55 |
54
|
adantr |
|
56 |
|
nnacl |
|
57 |
42 55 56
|
syl2an |
|
58 |
47 57
|
ffvelcdmd |
|
59 |
|
simprr |
|
60 |
52
|
addsridd |
|
61 |
28
|
a1i |
|
62 |
30
|
a1i |
|
63 |
61 62 52
|
sltadd2d |
|
64 |
27 63
|
mpbii |
|
65 |
60 64
|
eqbrtrrd |
|
66 |
|
nnasuc |
|
67 |
66
|
fveq2d |
|
68 |
42 49 67
|
syl2an |
|
69 |
1
|
ad2antrr |
|
70 |
2
|
ad2antrr |
|
71 |
69 70 51
|
om2noseqsuc |
|
72 |
68 71
|
eqtrd |
|
73 |
65 72
|
breqtrrd |
|
74 |
46 52 58 59 73
|
slttrd |
|
75 |
74
|
expr |
|
76 |
75
|
expcom |
|
77 |
11 15 19 45 76
|
finds2 |
|
78 |
77
|
impcom |
|
79 |
|
fveq2 |
|
80 |
79
|
breq2d |
|
81 |
78 80
|
syl5ibcom |
|
82 |
81
|
rexlimdva |
|
83 |
82
|
adantrr |
|
84 |
5 83
|
sylbid |
|