Metamath Proof Explorer


Theorem sltp1d

Description: A surreal is less than itself plus one. (Contributed by Scott Fenton, 13-Aug-2025)

Ref Expression
Hypothesis sltp1d.1 φ A No
Assertion sltp1d φ A < s A + s 1 s

Proof

Step Hyp Ref Expression
1 sltp1d.1 φ A No
2 1 addsridd φ A + s 0 s = A
3 0slt1s 0 s < s 1 s
4 0sno 0 s No
5 4 a1i φ 0 s No
6 1sno 1 s No
7 6 a1i φ 1 s No
8 5 7 1 sltadd2d φ 0 s < s 1 s A + s 0 s < s A + s 1 s
9 3 8 mpbii φ A + s 0 s < s A + s 1 s
10 2 9 eqbrtrrd φ A < s A + s 1 s