Metamath Proof Explorer


Theorem slttrd

Description: Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Hypotheses slttrd.1 φANo
slttrd.2 φBNo
slttrd.3 φCNo
slttrd.4 φA<sB
slttrd.5 φB<sC
Assertion slttrd φA<sC

Proof

Step Hyp Ref Expression
1 slttrd.1 φANo
2 slttrd.2 φBNo
3 slttrd.3 φCNo
4 slttrd.4 φA<sB
5 slttrd.5 φB<sC
6 slttr ANoBNoCNoA<sBB<sCA<sC
7 1 2 3 6 syl3anc φA<sBB<sCA<sC
8 4 5 7 mp2and φA<sC