Metamath Proof Explorer


Theorem sltletrd

Description: Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Hypotheses slttrd.1 φANo
slttrd.2 φBNo
slttrd.3 φCNo
sltletrd.4 φA<sB
sltletrd.5 φBsC
Assertion sltletrd φA<sC

Proof

Step Hyp Ref Expression
1 slttrd.1 φANo
2 slttrd.2 φBNo
3 slttrd.3 φCNo
4 sltletrd.4 φA<sB
5 sltletrd.5 φBsC
6 sltletr ANoBNoCNoA<sBBsCA<sC
7 1 2 3 6 syl3anc φA<sBBsCA<sC
8 4 5 7 mp2and φA<sC