| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 2 |  | om2noseq.2 | ⊢ ( 𝜑  →  𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 3 |  | om2noseq.3 | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  “  ω ) ) | 
						
							| 4 |  | nnaordex2 | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ∈  𝐵  ↔  ∃ 𝑦  ∈  ω ( 𝐴  +o  suc  𝑦 )  =  𝐵 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( 𝐴  ∈  𝐵  ↔  ∃ 𝑦  ∈  ω ( 𝐴  +o  suc  𝑦 )  =  𝐵 ) ) | 
						
							| 6 |  | suceq | ⊢ ( 𝑦  =  ∅  →  suc  𝑦  =  suc  ∅ ) | 
						
							| 7 |  | df-1o | ⊢ 1o  =  suc  ∅ | 
						
							| 8 | 6 7 | eqtr4di | ⊢ ( 𝑦  =  ∅  →  suc  𝑦  =  1o ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝑦  =  ∅  →  ( 𝐴  +o  suc  𝑦 )  =  ( 𝐴  +o  1o ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑦  =  ∅  →  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑦 ) )  =  ( 𝐺 ‘ ( 𝐴  +o  1o ) ) ) | 
						
							| 11 | 10 | breq2d | ⊢ ( 𝑦  =  ∅  →  ( ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑦 ) )  ↔  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  1o ) ) ) ) | 
						
							| 12 |  | suceq | ⊢ ( 𝑦  =  𝑧  →  suc  𝑦  =  suc  𝑧 ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( 𝑦  =  𝑧  →  ( 𝐴  +o  suc  𝑦 )  =  ( 𝐴  +o  suc  𝑧 ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝑦  =  𝑧  →  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑦 ) )  =  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) | 
						
							| 15 | 14 | breq2d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑦 ) )  ↔  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) ) | 
						
							| 16 |  | suceq | ⊢ ( 𝑦  =  suc  𝑧  →  suc  𝑦  =  suc  suc  𝑧 ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑦  =  suc  𝑧  →  ( 𝐴  +o  suc  𝑦 )  =  ( 𝐴  +o  suc  suc  𝑧 ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝑦  =  suc  𝑧  →  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑦 ) )  =  ( 𝐺 ‘ ( 𝐴  +o  suc  suc  𝑧 ) ) ) | 
						
							| 19 | 18 | breq2d | ⊢ ( 𝑦  =  suc  𝑧  →  ( ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑦 ) )  ↔  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  suc  𝑧 ) ) ) ) | 
						
							| 20 | 1 2 3 | om2noseqfo | ⊢ ( 𝜑  →  𝐺 : ω –onto→ 𝑍 ) | 
						
							| 21 |  | fof | ⊢ ( 𝐺 : ω –onto→ 𝑍  →  𝐺 : ω ⟶ 𝑍 ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝜑  →  𝐺 : ω ⟶ 𝑍 ) | 
						
							| 23 | 3 1 | noseqssno | ⊢ ( 𝜑  →  𝑍  ⊆   No  ) | 
						
							| 24 | 22 23 | fssd | ⊢ ( 𝜑  →  𝐺 : ω ⟶  No  ) | 
						
							| 25 | 24 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →  ( 𝐺 ‘ 𝐴 )  ∈   No  ) | 
						
							| 26 | 25 | addsridd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →  ( ( 𝐺 ‘ 𝐴 )  +s   0s  )  =  ( 𝐺 ‘ 𝐴 ) ) | 
						
							| 27 |  | 0slt1s | ⊢  0s   <s   1s | 
						
							| 28 |  | 0sno | ⊢  0s   ∈   No | 
						
							| 29 | 28 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →   0s   ∈   No  ) | 
						
							| 30 |  | 1sno | ⊢  1s   ∈   No | 
						
							| 31 | 30 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →   1s   ∈   No  ) | 
						
							| 32 | 29 31 25 | sltadd2d | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →  (  0s   <s   1s   ↔  ( ( 𝐺 ‘ 𝐴 )  +s   0s  )  <s  ( ( 𝐺 ‘ 𝐴 )  +s   1s  ) ) ) | 
						
							| 33 | 27 32 | mpbii | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →  ( ( 𝐺 ‘ 𝐴 )  +s   0s  )  <s  ( ( 𝐺 ‘ 𝐴 )  +s   1s  ) ) | 
						
							| 34 | 26 33 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →  ( 𝐺 ‘ 𝐴 )  <s  ( ( 𝐺 ‘ 𝐴 )  +s   1s  ) ) | 
						
							| 35 |  | nnon | ⊢ ( 𝐴  ∈  ω  →  𝐴  ∈  On ) | 
						
							| 36 |  | oa1suc | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  +o  1o )  =  suc  𝐴 ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴  +o  1o )  =  suc  𝐴 ) | 
						
							| 38 | 37 | fveq2d | ⊢ ( 𝐴  ∈  ω  →  ( 𝐺 ‘ ( 𝐴  +o  1o ) )  =  ( 𝐺 ‘ suc  𝐴 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →  ( 𝐺 ‘ ( 𝐴  +o  1o ) )  =  ( 𝐺 ‘ suc  𝐴 ) ) | 
						
							| 40 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →  𝐶  ∈   No  ) | 
						
							| 41 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →  𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 42 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →  𝐴  ∈  ω ) | 
						
							| 43 | 40 41 42 | om2noseqsuc | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →  ( 𝐺 ‘ suc  𝐴 )  =  ( ( 𝐺 ‘ 𝐴 )  +s   1s  ) ) | 
						
							| 44 | 39 43 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →  ( 𝐺 ‘ ( 𝐴  +o  1o ) )  =  ( ( 𝐺 ‘ 𝐴 )  +s   1s  ) ) | 
						
							| 45 | 34 44 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  1o ) ) ) | 
						
							| 46 | 25 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  ( 𝐺 ‘ 𝐴 )  ∈   No  ) | 
						
							| 47 | 24 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  𝐺 : ω ⟶  No  ) | 
						
							| 48 |  | peano2 | ⊢ ( 𝑧  ∈  ω  →  suc  𝑧  ∈  ω ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) )  →  suc  𝑧  ∈  ω ) | 
						
							| 50 |  | nnacl | ⊢ ( ( 𝐴  ∈  ω  ∧  suc  𝑧  ∈  ω )  →  ( 𝐴  +o  suc  𝑧 )  ∈  ω ) | 
						
							| 51 | 42 49 50 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  ( 𝐴  +o  suc  𝑧 )  ∈  ω ) | 
						
							| 52 | 47 51 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) )  ∈   No  ) | 
						
							| 53 |  | peano2 | ⊢ ( suc  𝑧  ∈  ω  →  suc  suc  𝑧  ∈  ω ) | 
						
							| 54 | 48 53 | syl | ⊢ ( 𝑧  ∈  ω  →  suc  suc  𝑧  ∈  ω ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) )  →  suc  suc  𝑧  ∈  ω ) | 
						
							| 56 |  | nnacl | ⊢ ( ( 𝐴  ∈  ω  ∧  suc  suc  𝑧  ∈  ω )  →  ( 𝐴  +o  suc  suc  𝑧 )  ∈  ω ) | 
						
							| 57 | 42 55 56 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  ( 𝐴  +o  suc  suc  𝑧 )  ∈  ω ) | 
						
							| 58 | 47 57 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  ( 𝐺 ‘ ( 𝐴  +o  suc  suc  𝑧 ) )  ∈   No  ) | 
						
							| 59 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) | 
						
							| 60 | 52 | addsridd | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  ( ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) )  +s   0s  )  =  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) | 
						
							| 61 | 28 | a1i | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →   0s   ∈   No  ) | 
						
							| 62 | 30 | a1i | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →   1s   ∈   No  ) | 
						
							| 63 | 61 62 52 | sltadd2d | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  (  0s   <s   1s   ↔  ( ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) )  +s   0s  )  <s  ( ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) )  +s   1s  ) ) ) | 
						
							| 64 | 27 63 | mpbii | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  ( ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) )  +s   0s  )  <s  ( ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) )  +s   1s  ) ) | 
						
							| 65 | 60 64 | eqbrtrrd | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) )  <s  ( ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) )  +s   1s  ) ) | 
						
							| 66 |  | nnasuc | ⊢ ( ( 𝐴  ∈  ω  ∧  suc  𝑧  ∈  ω )  →  ( 𝐴  +o  suc  suc  𝑧 )  =  suc  ( 𝐴  +o  suc  𝑧 ) ) | 
						
							| 67 | 66 | fveq2d | ⊢ ( ( 𝐴  ∈  ω  ∧  suc  𝑧  ∈  ω )  →  ( 𝐺 ‘ ( 𝐴  +o  suc  suc  𝑧 ) )  =  ( 𝐺 ‘ suc  ( 𝐴  +o  suc  𝑧 ) ) ) | 
						
							| 68 | 42 49 67 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  ( 𝐺 ‘ ( 𝐴  +o  suc  suc  𝑧 ) )  =  ( 𝐺 ‘ suc  ( 𝐴  +o  suc  𝑧 ) ) ) | 
						
							| 69 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  𝐶  ∈   No  ) | 
						
							| 70 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 71 | 69 70 51 | om2noseqsuc | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  ( 𝐺 ‘ suc  ( 𝐴  +o  suc  𝑧 ) )  =  ( ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) )  +s   1s  ) ) | 
						
							| 72 | 68 71 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  ( 𝐺 ‘ ( 𝐴  +o  suc  suc  𝑧 ) )  =  ( ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) )  +s   1s  ) ) | 
						
							| 73 | 65 72 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  suc  𝑧 ) ) ) | 
						
							| 74 | 46 52 58 59 73 | slttrd | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  ( 𝑧  ∈  ω  ∧  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) ) ) )  →  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  suc  𝑧 ) ) ) | 
						
							| 75 | 74 | expr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  𝑧  ∈  ω )  →  ( ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) )  →  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  suc  𝑧 ) ) ) ) | 
						
							| 76 | 75 | expcom | ⊢ ( 𝑧  ∈  ω  →  ( ( 𝜑  ∧  𝐴  ∈  ω )  →  ( ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑧 ) )  →  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  suc  𝑧 ) ) ) ) ) | 
						
							| 77 | 11 15 19 45 76 | finds2 | ⊢ ( 𝑦  ∈  ω  →  ( ( 𝜑  ∧  𝐴  ∈  ω )  →  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑦 ) ) ) ) | 
						
							| 78 | 77 | impcom | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  𝑦  ∈  ω )  →  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑦 ) ) ) | 
						
							| 79 |  | fveq2 | ⊢ ( ( 𝐴  +o  suc  𝑦 )  =  𝐵  →  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑦 ) )  =  ( 𝐺 ‘ 𝐵 ) ) | 
						
							| 80 | 79 | breq2d | ⊢ ( ( 𝐴  +o  suc  𝑦 )  =  𝐵  →  ( ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ ( 𝐴  +o  suc  𝑦 ) )  ↔  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 81 | 78 80 | syl5ibcom | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ω )  ∧  𝑦  ∈  ω )  →  ( ( 𝐴  +o  suc  𝑦 )  =  𝐵  →  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 82 | 81 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →  ( ∃ 𝑦  ∈  ω ( 𝐴  +o  suc  𝑦 )  =  𝐵  →  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 83 | 82 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( ∃ 𝑦  ∈  ω ( 𝐴  +o  suc  𝑦 )  =  𝐵  →  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 84 | 5 83 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( 𝐴  ∈  𝐵  →  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ 𝐵 ) ) ) |