Step |
Hyp |
Ref |
Expression |
1 |
|
om2noseq.1 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
2 |
|
om2noseq.2 |
⊢ ( 𝜑 → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
3 |
|
om2noseq.3 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) ) |
4 |
|
nnaordex2 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑦 ∈ ω ( 𝐴 +o suc 𝑦 ) = 𝐵 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑦 ∈ ω ( 𝐴 +o suc 𝑦 ) = 𝐵 ) ) |
6 |
|
suceq |
⊢ ( 𝑦 = ∅ → suc 𝑦 = suc ∅ ) |
7 |
|
df-1o |
⊢ 1o = suc ∅ |
8 |
6 7
|
eqtr4di |
⊢ ( 𝑦 = ∅ → suc 𝑦 = 1o ) |
9 |
8
|
oveq2d |
⊢ ( 𝑦 = ∅ → ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +o 1o ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑦 = ∅ → ( 𝐺 ‘ ( 𝐴 +o suc 𝑦 ) ) = ( 𝐺 ‘ ( 𝐴 +o 1o ) ) ) |
11 |
10
|
breq2d |
⊢ ( 𝑦 = ∅ → ( ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑦 ) ) ↔ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o 1o ) ) ) ) |
12 |
|
suceq |
⊢ ( 𝑦 = 𝑧 → suc 𝑦 = suc 𝑧 ) |
13 |
12
|
oveq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +o suc 𝑧 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ ( 𝐴 +o suc 𝑦 ) ) = ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) |
15 |
14
|
breq2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑦 ) ) ↔ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) |
16 |
|
suceq |
⊢ ( 𝑦 = suc 𝑧 → suc 𝑦 = suc suc 𝑧 ) |
17 |
16
|
oveq2d |
⊢ ( 𝑦 = suc 𝑧 → ( 𝐴 +o suc 𝑦 ) = ( 𝐴 +o suc suc 𝑧 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝑦 = suc 𝑧 → ( 𝐺 ‘ ( 𝐴 +o suc 𝑦 ) ) = ( 𝐺 ‘ ( 𝐴 +o suc suc 𝑧 ) ) ) |
19 |
18
|
breq2d |
⊢ ( 𝑦 = suc 𝑧 → ( ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑦 ) ) ↔ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc suc 𝑧 ) ) ) ) |
20 |
1 2 3
|
om2noseqfo |
⊢ ( 𝜑 → 𝐺 : ω –onto→ 𝑍 ) |
21 |
|
fof |
⊢ ( 𝐺 : ω –onto→ 𝑍 → 𝐺 : ω ⟶ 𝑍 ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → 𝐺 : ω ⟶ 𝑍 ) |
23 |
3 1
|
noseqssno |
⊢ ( 𝜑 → 𝑍 ⊆ No ) |
24 |
22 23
|
fssd |
⊢ ( 𝜑 → 𝐺 : ω ⟶ No ) |
25 |
24
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐺 ‘ 𝐴 ) ∈ No ) |
26 |
25
|
addsridd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ( 𝐺 ‘ 𝐴 ) +s 0s ) = ( 𝐺 ‘ 𝐴 ) ) |
27 |
|
0slt1s |
⊢ 0s <s 1s |
28 |
|
0sno |
⊢ 0s ∈ No |
29 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → 0s ∈ No ) |
30 |
|
1sno |
⊢ 1s ∈ No |
31 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → 1s ∈ No ) |
32 |
29 31 25
|
sltadd2d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 0s <s 1s ↔ ( ( 𝐺 ‘ 𝐴 ) +s 0s ) <s ( ( 𝐺 ‘ 𝐴 ) +s 1s ) ) ) |
33 |
27 32
|
mpbii |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ( 𝐺 ‘ 𝐴 ) +s 0s ) <s ( ( 𝐺 ‘ 𝐴 ) +s 1s ) ) |
34 |
26 33
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐺 ‘ 𝐴 ) <s ( ( 𝐺 ‘ 𝐴 ) +s 1s ) ) |
35 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
36 |
|
oa1suc |
⊢ ( 𝐴 ∈ On → ( 𝐴 +o 1o ) = suc 𝐴 ) |
37 |
35 36
|
syl |
⊢ ( 𝐴 ∈ ω → ( 𝐴 +o 1o ) = suc 𝐴 ) |
38 |
37
|
fveq2d |
⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ ( 𝐴 +o 1o ) ) = ( 𝐺 ‘ suc 𝐴 ) ) |
39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐺 ‘ ( 𝐴 +o 1o ) ) = ( 𝐺 ‘ suc 𝐴 ) ) |
40 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → 𝐶 ∈ No ) |
41 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → 𝐴 ∈ ω ) |
43 |
40 41 42
|
om2noseqsuc |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐺 ‘ suc 𝐴 ) = ( ( 𝐺 ‘ 𝐴 ) +s 1s ) ) |
44 |
39 43
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐺 ‘ ( 𝐴 +o 1o ) ) = ( ( 𝐺 ‘ 𝐴 ) +s 1s ) ) |
45 |
34 44
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o 1o ) ) ) |
46 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → ( 𝐺 ‘ 𝐴 ) ∈ No ) |
47 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → 𝐺 : ω ⟶ No ) |
48 |
|
peano2 |
⊢ ( 𝑧 ∈ ω → suc 𝑧 ∈ ω ) |
49 |
48
|
adantr |
⊢ ( ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) → suc 𝑧 ∈ ω ) |
50 |
|
nnacl |
⊢ ( ( 𝐴 ∈ ω ∧ suc 𝑧 ∈ ω ) → ( 𝐴 +o suc 𝑧 ) ∈ ω ) |
51 |
42 49 50
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → ( 𝐴 +o suc 𝑧 ) ∈ ω ) |
52 |
47 51
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ∈ No ) |
53 |
|
peano2 |
⊢ ( suc 𝑧 ∈ ω → suc suc 𝑧 ∈ ω ) |
54 |
48 53
|
syl |
⊢ ( 𝑧 ∈ ω → suc suc 𝑧 ∈ ω ) |
55 |
54
|
adantr |
⊢ ( ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) → suc suc 𝑧 ∈ ω ) |
56 |
|
nnacl |
⊢ ( ( 𝐴 ∈ ω ∧ suc suc 𝑧 ∈ ω ) → ( 𝐴 +o suc suc 𝑧 ) ∈ ω ) |
57 |
42 55 56
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → ( 𝐴 +o suc suc 𝑧 ) ∈ ω ) |
58 |
47 57
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → ( 𝐺 ‘ ( 𝐴 +o suc suc 𝑧 ) ) ∈ No ) |
59 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) |
60 |
52
|
addsridd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → ( ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) +s 0s ) = ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) |
61 |
28
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → 0s ∈ No ) |
62 |
30
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → 1s ∈ No ) |
63 |
61 62 52
|
sltadd2d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → ( 0s <s 1s ↔ ( ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) +s 0s ) <s ( ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) +s 1s ) ) ) |
64 |
27 63
|
mpbii |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → ( ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) +s 0s ) <s ( ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) +s 1s ) ) |
65 |
60 64
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) <s ( ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) +s 1s ) ) |
66 |
|
nnasuc |
⊢ ( ( 𝐴 ∈ ω ∧ suc 𝑧 ∈ ω ) → ( 𝐴 +o suc suc 𝑧 ) = suc ( 𝐴 +o suc 𝑧 ) ) |
67 |
66
|
fveq2d |
⊢ ( ( 𝐴 ∈ ω ∧ suc 𝑧 ∈ ω ) → ( 𝐺 ‘ ( 𝐴 +o suc suc 𝑧 ) ) = ( 𝐺 ‘ suc ( 𝐴 +o suc 𝑧 ) ) ) |
68 |
42 49 67
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → ( 𝐺 ‘ ( 𝐴 +o suc suc 𝑧 ) ) = ( 𝐺 ‘ suc ( 𝐴 +o suc 𝑧 ) ) ) |
69 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → 𝐶 ∈ No ) |
70 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
71 |
69 70 51
|
om2noseqsuc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → ( 𝐺 ‘ suc ( 𝐴 +o suc 𝑧 ) ) = ( ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) +s 1s ) ) |
72 |
68 71
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → ( 𝐺 ‘ ( 𝐴 +o suc suc 𝑧 ) ) = ( ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) +s 1s ) ) |
73 |
65 72
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) <s ( 𝐺 ‘ ( 𝐴 +o suc suc 𝑧 ) ) ) |
74 |
46 52 58 59 73
|
slttrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) ) ) → ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc suc 𝑧 ) ) ) |
75 |
74
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ 𝑧 ∈ ω ) → ( ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) → ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc suc 𝑧 ) ) ) ) |
76 |
75
|
expcom |
⊢ ( 𝑧 ∈ ω → ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑧 ) ) → ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc suc 𝑧 ) ) ) ) ) |
77 |
11 15 19 45 76
|
finds2 |
⊢ ( 𝑦 ∈ ω → ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑦 ) ) ) ) |
78 |
77
|
impcom |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑦 ) ) ) |
79 |
|
fveq2 |
⊢ ( ( 𝐴 +o suc 𝑦 ) = 𝐵 → ( 𝐺 ‘ ( 𝐴 +o suc 𝑦 ) ) = ( 𝐺 ‘ 𝐵 ) ) |
80 |
79
|
breq2d |
⊢ ( ( 𝐴 +o suc 𝑦 ) = 𝐵 → ( ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ ( 𝐴 +o suc 𝑦 ) ) ↔ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ 𝐵 ) ) ) |
81 |
78 80
|
syl5ibcom |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( ( 𝐴 +o suc 𝑦 ) = 𝐵 → ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ 𝐵 ) ) ) |
82 |
81
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ∃ 𝑦 ∈ ω ( 𝐴 +o suc 𝑦 ) = 𝐵 → ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ 𝐵 ) ) ) |
83 |
82
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ∃ 𝑦 ∈ ω ( 𝐴 +o suc 𝑦 ) = 𝐵 → ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ 𝐵 ) ) ) |
84 |
5 83
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐴 ∈ 𝐵 → ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ 𝐵 ) ) ) |