| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 2 |  | om2noseq.2 | ⊢ ( 𝜑  →  𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 3 |  | om2noseq.3 | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  “  ω ) ) | 
						
							| 4 | 1 2 3 | om2noseqlt | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( 𝐴  ∈  𝐵  →  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 5 | 1 2 3 | om2noseqlt | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  ω  ∧  𝐴  ∈  ω ) )  →  ( 𝐵  ∈  𝐴  →  ( 𝐺 ‘ 𝐵 )  <s  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 6 | 5 | ancom2s | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( 𝐵  ∈  𝐴  →  ( 𝐺 ‘ 𝐵 )  <s  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝐵  =  𝐴  →  ( 𝐺 ‘ 𝐵 )  =  ( 𝐺 ‘ 𝐴 ) ) | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( 𝐵  =  𝐴  →  ( 𝐺 ‘ 𝐵 )  =  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 9 | 6 8 | orim12d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 )  →  ( ( 𝐺 ‘ 𝐵 )  <s  ( 𝐺 ‘ 𝐴 )  ∨  ( 𝐺 ‘ 𝐵 )  =  ( 𝐺 ‘ 𝐴 ) ) ) ) | 
						
							| 10 |  | nnon | ⊢ ( 𝐵  ∈  ω  →  𝐵  ∈  On ) | 
						
							| 11 |  | nnon | ⊢ ( 𝐴  ∈  ω  →  𝐴  ∈  On ) | 
						
							| 12 |  | onsseleq | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝐵  ⊆  𝐴  ↔  ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 ) ) ) | 
						
							| 13 |  | ontri1 | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝐵  ⊆  𝐴  ↔  ¬  𝐴  ∈  𝐵 ) ) | 
						
							| 14 | 12 13 | bitr3d | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On )  →  ( ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 )  ↔  ¬  𝐴  ∈  𝐵 ) ) | 
						
							| 15 | 10 11 14 | syl2anr | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 )  ↔  ¬  𝐴  ∈  𝐵 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( ( 𝐵  ∈  𝐴  ∨  𝐵  =  𝐴 )  ↔  ¬  𝐴  ∈  𝐵 ) ) | 
						
							| 17 | 1 2 3 | om2noseqfo | ⊢ ( 𝜑  →  𝐺 : ω –onto→ 𝑍 ) | 
						
							| 18 |  | fof | ⊢ ( 𝐺 : ω –onto→ 𝑍  →  𝐺 : ω ⟶ 𝑍 ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝜑  →  𝐺 : ω ⟶ 𝑍 ) | 
						
							| 20 | 3 1 | noseqssno | ⊢ ( 𝜑  →  𝑍  ⊆   No  ) | 
						
							| 21 | 19 20 | fssd | ⊢ ( 𝜑  →  𝐺 : ω ⟶  No  ) | 
						
							| 22 | 21 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ω )  →  ( 𝐺 ‘ 𝐵 )  ∈   No  ) | 
						
							| 23 | 22 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( 𝐺 ‘ 𝐵 )  ∈   No  ) | 
						
							| 24 | 21 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ω )  →  ( 𝐺 ‘ 𝐴 )  ∈   No  ) | 
						
							| 25 | 24 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( 𝐺 ‘ 𝐴 )  ∈   No  ) | 
						
							| 26 |  | sleloe | ⊢ ( ( ( 𝐺 ‘ 𝐵 )  ∈   No   ∧  ( 𝐺 ‘ 𝐴 )  ∈   No  )  →  ( ( 𝐺 ‘ 𝐵 )  ≤s  ( 𝐺 ‘ 𝐴 )  ↔  ( ( 𝐺 ‘ 𝐵 )  <s  ( 𝐺 ‘ 𝐴 )  ∨  ( 𝐺 ‘ 𝐵 )  =  ( 𝐺 ‘ 𝐴 ) ) ) ) | 
						
							| 27 |  | slenlt | ⊢ ( ( ( 𝐺 ‘ 𝐵 )  ∈   No   ∧  ( 𝐺 ‘ 𝐴 )  ∈   No  )  →  ( ( 𝐺 ‘ 𝐵 )  ≤s  ( 𝐺 ‘ 𝐴 )  ↔  ¬  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 28 | 26 27 | bitr3d | ⊢ ( ( ( 𝐺 ‘ 𝐵 )  ∈   No   ∧  ( 𝐺 ‘ 𝐴 )  ∈   No  )  →  ( ( ( 𝐺 ‘ 𝐵 )  <s  ( 𝐺 ‘ 𝐴 )  ∨  ( 𝐺 ‘ 𝐵 )  =  ( 𝐺 ‘ 𝐴 ) )  ↔  ¬  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 29 | 23 25 28 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( ( ( 𝐺 ‘ 𝐵 )  <s  ( 𝐺 ‘ 𝐴 )  ∨  ( 𝐺 ‘ 𝐵 )  =  ( 𝐺 ‘ 𝐴 ) )  ↔  ¬  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 30 | 9 16 29 | 3imtr3d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( ¬  𝐴  ∈  𝐵  →  ¬  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 31 | 4 30 | impcon4bid | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  →  ( 𝐴  ∈  𝐵  ↔  ( 𝐺 ‘ 𝐴 )  <s  ( 𝐺 ‘ 𝐵 ) ) ) |