| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2noseq.1 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 2 |
|
om2noseq.2 |
⊢ ( 𝜑 → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
| 3 |
|
om2noseq.3 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) ) |
| 4 |
1 2 3
|
om2noseqlt |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐴 ∈ 𝐵 → ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ 𝐵 ) ) ) |
| 5 |
1 2 3
|
om2noseqlt |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ) → ( 𝐵 ∈ 𝐴 → ( 𝐺 ‘ 𝐵 ) <s ( 𝐺 ‘ 𝐴 ) ) ) |
| 6 |
5
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐵 ∈ 𝐴 → ( 𝐺 ‘ 𝐵 ) <s ( 𝐺 ‘ 𝐴 ) ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝐵 = 𝐴 → ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) |
| 8 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐵 = 𝐴 → ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ) |
| 9 |
6 8
|
orim12d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) → ( ( 𝐺 ‘ 𝐵 ) <s ( 𝐺 ‘ 𝐴 ) ∨ ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 10 |
|
nnon |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) |
| 11 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
| 12 |
|
onsseleq |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 13 |
|
ontri1 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
| 14 |
12 13
|
bitr3d |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
| 15 |
10 11 14
|
syl2anr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
| 17 |
1 2 3
|
om2noseqfo |
⊢ ( 𝜑 → 𝐺 : ω –onto→ 𝑍 ) |
| 18 |
|
fof |
⊢ ( 𝐺 : ω –onto→ 𝑍 → 𝐺 : ω ⟶ 𝑍 ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → 𝐺 : ω ⟶ 𝑍 ) |
| 20 |
3 1
|
noseqssno |
⊢ ( 𝜑 → 𝑍 ⊆ No ) |
| 21 |
19 20
|
fssd |
⊢ ( 𝜑 → 𝐺 : ω ⟶ No ) |
| 22 |
21
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ω ) → ( 𝐺 ‘ 𝐵 ) ∈ No ) |
| 23 |
22
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐺 ‘ 𝐵 ) ∈ No ) |
| 24 |
21
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐺 ‘ 𝐴 ) ∈ No ) |
| 25 |
24
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐺 ‘ 𝐴 ) ∈ No ) |
| 26 |
|
sleloe |
⊢ ( ( ( 𝐺 ‘ 𝐵 ) ∈ No ∧ ( 𝐺 ‘ 𝐴 ) ∈ No ) → ( ( 𝐺 ‘ 𝐵 ) ≤s ( 𝐺 ‘ 𝐴 ) ↔ ( ( 𝐺 ‘ 𝐵 ) <s ( 𝐺 ‘ 𝐴 ) ∨ ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 27 |
|
slenlt |
⊢ ( ( ( 𝐺 ‘ 𝐵 ) ∈ No ∧ ( 𝐺 ‘ 𝐴 ) ∈ No ) → ( ( 𝐺 ‘ 𝐵 ) ≤s ( 𝐺 ‘ 𝐴 ) ↔ ¬ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ 𝐵 ) ) ) |
| 28 |
26 27
|
bitr3d |
⊢ ( ( ( 𝐺 ‘ 𝐵 ) ∈ No ∧ ( 𝐺 ‘ 𝐴 ) ∈ No ) → ( ( ( 𝐺 ‘ 𝐵 ) <s ( 𝐺 ‘ 𝐴 ) ∨ ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ↔ ¬ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ 𝐵 ) ) ) |
| 29 |
23 25 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( ( 𝐺 ‘ 𝐵 ) <s ( 𝐺 ‘ 𝐴 ) ∨ ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ↔ ¬ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ 𝐵 ) ) ) |
| 30 |
9 16 29
|
3imtr3d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ¬ 𝐴 ∈ 𝐵 → ¬ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ 𝐵 ) ) ) |
| 31 |
4 30
|
impcon4bid |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐺 ‘ 𝐴 ) <s ( 𝐺 ‘ 𝐵 ) ) ) |