| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 2 |  | om2noseq.2 | ⊢ ( 𝜑  →  𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 3 |  | om2noseq.3 | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  “  ω ) ) | 
						
							| 4 | 1 2 3 | om2noseqfo | ⊢ ( 𝜑  →  𝐺 : ω –onto→ 𝑍 ) | 
						
							| 5 |  | fof | ⊢ ( 𝐺 : ω –onto→ 𝑍  →  𝐺 : ω ⟶ 𝑍 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  𝐺 : ω ⟶ 𝑍 ) | 
						
							| 7 | 1 2 3 | om2noseqlt | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ω  ∧  𝑧  ∈  ω ) )  →  ( 𝑦  ∈  𝑧  →  ( 𝐺 ‘ 𝑦 )  <s  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 8 | 1 2 3 | om2noseqlt | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ω  ∧  𝑦  ∈  ω ) )  →  ( 𝑧  ∈  𝑦  →  ( 𝐺 ‘ 𝑧 )  <s  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 9 | 8 | ancom2s | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ω  ∧  𝑧  ∈  ω ) )  →  ( 𝑧  ∈  𝑦  →  ( 𝐺 ‘ 𝑧 )  <s  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 10 | 7 9 | orim12d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ω  ∧  𝑧  ∈  ω ) )  →  ( ( 𝑦  ∈  𝑧  ∨  𝑧  ∈  𝑦 )  →  ( ( 𝐺 ‘ 𝑦 )  <s  ( 𝐺 ‘ 𝑧 )  ∨  ( 𝐺 ‘ 𝑧 )  <s  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 11 | 10 | con3d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ω  ∧  𝑧  ∈  ω ) )  →  ( ¬  ( ( 𝐺 ‘ 𝑦 )  <s  ( 𝐺 ‘ 𝑧 )  ∨  ( 𝐺 ‘ 𝑧 )  <s  ( 𝐺 ‘ 𝑦 ) )  →  ¬  ( 𝑦  ∈  𝑧  ∨  𝑧  ∈  𝑦 ) ) ) | 
						
							| 12 | 3 1 | noseqssno | ⊢ ( 𝜑  →  𝑍  ⊆   No  ) | 
						
							| 13 | 6 12 | fssd | ⊢ ( 𝜑  →  𝐺 : ω ⟶  No  ) | 
						
							| 14 | 13 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ω )  →  ( 𝐺 ‘ 𝑦 )  ∈   No  ) | 
						
							| 15 | 14 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ω  ∧  𝑧  ∈  ω ) )  →  ( 𝐺 ‘ 𝑦 )  ∈   No  ) | 
						
							| 16 | 13 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ω )  →  ( 𝐺 ‘ 𝑧 )  ∈   No  ) | 
						
							| 17 | 16 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ω  ∧  𝑧  ∈  ω ) )  →  ( 𝐺 ‘ 𝑧 )  ∈   No  ) | 
						
							| 18 |  | slttrieq2 | ⊢ ( ( ( 𝐺 ‘ 𝑦 )  ∈   No   ∧  ( 𝐺 ‘ 𝑧 )  ∈   No  )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  ↔  ( ¬  ( 𝐺 ‘ 𝑦 )  <s  ( 𝐺 ‘ 𝑧 )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  <s  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 19 |  | ioran | ⊢ ( ¬  ( ( 𝐺 ‘ 𝑦 )  <s  ( 𝐺 ‘ 𝑧 )  ∨  ( 𝐺 ‘ 𝑧 )  <s  ( 𝐺 ‘ 𝑦 ) )  ↔  ( ¬  ( 𝐺 ‘ 𝑦 )  <s  ( 𝐺 ‘ 𝑧 )  ∧  ¬  ( 𝐺 ‘ 𝑧 )  <s  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 20 | 18 19 | bitr4di | ⊢ ( ( ( 𝐺 ‘ 𝑦 )  ∈   No   ∧  ( 𝐺 ‘ 𝑧 )  ∈   No  )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  ↔  ¬  ( ( 𝐺 ‘ 𝑦 )  <s  ( 𝐺 ‘ 𝑧 )  ∨  ( 𝐺 ‘ 𝑧 )  <s  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 21 | 15 17 20 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ω  ∧  𝑧  ∈  ω ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  ↔  ¬  ( ( 𝐺 ‘ 𝑦 )  <s  ( 𝐺 ‘ 𝑧 )  ∨  ( 𝐺 ‘ 𝑧 )  <s  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 22 |  | nnord | ⊢ ( 𝑦  ∈  ω  →  Ord  𝑦 ) | 
						
							| 23 |  | nnord | ⊢ ( 𝑧  ∈  ω  →  Ord  𝑧 ) | 
						
							| 24 |  | ordtri3 | ⊢ ( ( Ord  𝑦  ∧  Ord  𝑧 )  →  ( 𝑦  =  𝑧  ↔  ¬  ( 𝑦  ∈  𝑧  ∨  𝑧  ∈  𝑦 ) ) ) | 
						
							| 25 | 22 23 24 | syl2an | ⊢ ( ( 𝑦  ∈  ω  ∧  𝑧  ∈  ω )  →  ( 𝑦  =  𝑧  ↔  ¬  ( 𝑦  ∈  𝑧  ∨  𝑧  ∈  𝑦 ) ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ω  ∧  𝑧  ∈  ω ) )  →  ( 𝑦  =  𝑧  ↔  ¬  ( 𝑦  ∈  𝑧  ∨  𝑧  ∈  𝑦 ) ) ) | 
						
							| 27 | 11 21 26 | 3imtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ω  ∧  𝑧  ∈  ω ) )  →  ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 28 | 27 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ω ∀ 𝑧  ∈  ω ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 29 |  | dff13 | ⊢ ( 𝐺 : ω –1-1→ 𝑍  ↔  ( 𝐺 : ω ⟶ 𝑍  ∧  ∀ 𝑦  ∈  ω ∀ 𝑧  ∈  ω ( ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 30 | 6 28 29 | sylanbrc | ⊢ ( 𝜑  →  𝐺 : ω –1-1→ 𝑍 ) | 
						
							| 31 |  | df-f1o | ⊢ ( 𝐺 : ω –1-1-onto→ 𝑍  ↔  ( 𝐺 : ω –1-1→ 𝑍  ∧  𝐺 : ω –onto→ 𝑍 ) ) | 
						
							| 32 | 30 4 31 | sylanbrc | ⊢ ( 𝜑  →  𝐺 : ω –1-1-onto→ 𝑍 ) |