Step |
Hyp |
Ref |
Expression |
1 |
|
om2noseq.1 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
2 |
|
om2noseq.2 |
⊢ ( 𝜑 → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
3 |
|
om2noseq.3 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) ) |
4 |
1 2 3
|
om2noseqfo |
⊢ ( 𝜑 → 𝐺 : ω –onto→ 𝑍 ) |
5 |
|
fof |
⊢ ( 𝐺 : ω –onto→ 𝑍 → 𝐺 : ω ⟶ 𝑍 ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝐺 : ω ⟶ 𝑍 ) |
7 |
1 2 3
|
om2noseqlt |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝑦 ∈ 𝑧 → ( 𝐺 ‘ 𝑦 ) <s ( 𝐺 ‘ 𝑧 ) ) ) |
8 |
1 2 3
|
om2noseqlt |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝑧 ∈ 𝑦 → ( 𝐺 ‘ 𝑧 ) <s ( 𝐺 ‘ 𝑦 ) ) ) |
9 |
8
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝑧 ∈ 𝑦 → ( 𝐺 ‘ 𝑧 ) <s ( 𝐺 ‘ 𝑦 ) ) ) |
10 |
7 9
|
orim12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) → ( ( 𝐺 ‘ 𝑦 ) <s ( 𝐺 ‘ 𝑧 ) ∨ ( 𝐺 ‘ 𝑧 ) <s ( 𝐺 ‘ 𝑦 ) ) ) ) |
11 |
10
|
con3d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ¬ ( ( 𝐺 ‘ 𝑦 ) <s ( 𝐺 ‘ 𝑧 ) ∨ ( 𝐺 ‘ 𝑧 ) <s ( 𝐺 ‘ 𝑦 ) ) → ¬ ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
12 |
3 1
|
noseqssno |
⊢ ( 𝜑 → 𝑍 ⊆ No ) |
13 |
6 12
|
fssd |
⊢ ( 𝜑 → 𝐺 : ω ⟶ No ) |
14 |
13
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ 𝑦 ) ∈ No ) |
15 |
14
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝐺 ‘ 𝑦 ) ∈ No ) |
16 |
13
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ω ) → ( 𝐺 ‘ 𝑧 ) ∈ No ) |
17 |
16
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝐺 ‘ 𝑧 ) ∈ No ) |
18 |
|
slttrieq2 |
⊢ ( ( ( 𝐺 ‘ 𝑦 ) ∈ No ∧ ( 𝐺 ‘ 𝑧 ) ∈ No ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( ¬ ( 𝐺 ‘ 𝑦 ) <s ( 𝐺 ‘ 𝑧 ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) <s ( 𝐺 ‘ 𝑦 ) ) ) ) |
19 |
|
ioran |
⊢ ( ¬ ( ( 𝐺 ‘ 𝑦 ) <s ( 𝐺 ‘ 𝑧 ) ∨ ( 𝐺 ‘ 𝑧 ) <s ( 𝐺 ‘ 𝑦 ) ) ↔ ( ¬ ( 𝐺 ‘ 𝑦 ) <s ( 𝐺 ‘ 𝑧 ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) <s ( 𝐺 ‘ 𝑦 ) ) ) |
20 |
18 19
|
bitr4di |
⊢ ( ( ( 𝐺 ‘ 𝑦 ) ∈ No ∧ ( 𝐺 ‘ 𝑧 ) ∈ No ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ↔ ¬ ( ( 𝐺 ‘ 𝑦 ) <s ( 𝐺 ‘ 𝑧 ) ∨ ( 𝐺 ‘ 𝑧 ) <s ( 𝐺 ‘ 𝑦 ) ) ) ) |
21 |
15 17 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ↔ ¬ ( ( 𝐺 ‘ 𝑦 ) <s ( 𝐺 ‘ 𝑧 ) ∨ ( 𝐺 ‘ 𝑧 ) <s ( 𝐺 ‘ 𝑦 ) ) ) ) |
22 |
|
nnord |
⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) |
23 |
|
nnord |
⊢ ( 𝑧 ∈ ω → Ord 𝑧 ) |
24 |
|
ordtri3 |
⊢ ( ( Ord 𝑦 ∧ Ord 𝑧 ) → ( 𝑦 = 𝑧 ↔ ¬ ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
25 |
22 23 24
|
syl2an |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝑦 = 𝑧 ↔ ¬ ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝑦 = 𝑧 ↔ ¬ ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
27 |
11 21 26
|
3imtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
28 |
27
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
29 |
|
dff13 |
⊢ ( 𝐺 : ω –1-1→ 𝑍 ↔ ( 𝐺 : ω ⟶ 𝑍 ∧ ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
30 |
6 28 29
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 : ω –1-1→ 𝑍 ) |
31 |
|
df-f1o |
⊢ ( 𝐺 : ω –1-1-onto→ 𝑍 ↔ ( 𝐺 : ω –1-1→ 𝑍 ∧ 𝐺 : ω –onto→ 𝑍 ) ) |
32 |
30 4 31
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 : ω –1-1-onto→ 𝑍 ) |