Metamath Proof Explorer


Theorem om2noseqf1o

Description: G is a bijection. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 ( 𝜑𝐶 No )
om2noseq.2 ( 𝜑𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) )
om2noseq.3 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) )
Assertion om2noseqf1o ( 𝜑𝐺 : ω –1-1-onto𝑍 )

Proof

Step Hyp Ref Expression
1 om2noseq.1 ( 𝜑𝐶 No )
2 om2noseq.2 ( 𝜑𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) )
3 om2noseq.3 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) )
4 1 2 3 om2noseqfo ( 𝜑𝐺 : ω –onto𝑍 )
5 fof ( 𝐺 : ω –onto𝑍𝐺 : ω ⟶ 𝑍 )
6 4 5 syl ( 𝜑𝐺 : ω ⟶ 𝑍 )
7 1 2 3 om2noseqlt ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝑦𝑧 → ( 𝐺𝑦 ) <s ( 𝐺𝑧 ) ) )
8 1 2 3 om2noseqlt ( ( 𝜑 ∧ ( 𝑧 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝑧𝑦 → ( 𝐺𝑧 ) <s ( 𝐺𝑦 ) ) )
9 8 ancom2s ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝑧𝑦 → ( 𝐺𝑧 ) <s ( 𝐺𝑦 ) ) )
10 7 9 orim12d ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ( 𝑦𝑧𝑧𝑦 ) → ( ( 𝐺𝑦 ) <s ( 𝐺𝑧 ) ∨ ( 𝐺𝑧 ) <s ( 𝐺𝑦 ) ) ) )
11 10 con3d ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ¬ ( ( 𝐺𝑦 ) <s ( 𝐺𝑧 ) ∨ ( 𝐺𝑧 ) <s ( 𝐺𝑦 ) ) → ¬ ( 𝑦𝑧𝑧𝑦 ) ) )
12 3 1 noseqssno ( 𝜑𝑍 No )
13 6 12 fssd ( 𝜑𝐺 : ω ⟶ No )
14 13 ffvelcdmda ( ( 𝜑𝑦 ∈ ω ) → ( 𝐺𝑦 ) ∈ No )
15 14 adantrr ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝐺𝑦 ) ∈ No )
16 13 ffvelcdmda ( ( 𝜑𝑧 ∈ ω ) → ( 𝐺𝑧 ) ∈ No )
17 16 adantrl ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝐺𝑧 ) ∈ No )
18 slttrieq2 ( ( ( 𝐺𝑦 ) ∈ No ∧ ( 𝐺𝑧 ) ∈ No ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) ↔ ( ¬ ( 𝐺𝑦 ) <s ( 𝐺𝑧 ) ∧ ¬ ( 𝐺𝑧 ) <s ( 𝐺𝑦 ) ) ) )
19 ioran ( ¬ ( ( 𝐺𝑦 ) <s ( 𝐺𝑧 ) ∨ ( 𝐺𝑧 ) <s ( 𝐺𝑦 ) ) ↔ ( ¬ ( 𝐺𝑦 ) <s ( 𝐺𝑧 ) ∧ ¬ ( 𝐺𝑧 ) <s ( 𝐺𝑦 ) ) )
20 18 19 bitr4di ( ( ( 𝐺𝑦 ) ∈ No ∧ ( 𝐺𝑧 ) ∈ No ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) ↔ ¬ ( ( 𝐺𝑦 ) <s ( 𝐺𝑧 ) ∨ ( 𝐺𝑧 ) <s ( 𝐺𝑦 ) ) ) )
21 15 17 20 syl2anc ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) ↔ ¬ ( ( 𝐺𝑦 ) <s ( 𝐺𝑧 ) ∨ ( 𝐺𝑧 ) <s ( 𝐺𝑦 ) ) ) )
22 nnord ( 𝑦 ∈ ω → Ord 𝑦 )
23 nnord ( 𝑧 ∈ ω → Ord 𝑧 )
24 ordtri3 ( ( Ord 𝑦 ∧ Ord 𝑧 ) → ( 𝑦 = 𝑧 ↔ ¬ ( 𝑦𝑧𝑧𝑦 ) ) )
25 22 23 24 syl2an ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝑦 = 𝑧 ↔ ¬ ( 𝑦𝑧𝑧𝑦 ) ) )
26 25 adantl ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝑦 = 𝑧 ↔ ¬ ( 𝑦𝑧𝑧𝑦 ) ) )
27 11 21 26 3imtr4d ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) )
28 27 ralrimivva ( 𝜑 → ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) )
29 dff13 ( 𝐺 : ω –1-1𝑍 ↔ ( 𝐺 : ω ⟶ 𝑍 ∧ ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( ( 𝐺𝑦 ) = ( 𝐺𝑧 ) → 𝑦 = 𝑧 ) ) )
30 6 28 29 sylanbrc ( 𝜑𝐺 : ω –1-1𝑍 )
31 df-f1o ( 𝐺 : ω –1-1-onto𝑍 ↔ ( 𝐺 : ω –1-1𝑍𝐺 : ω –onto𝑍 ) )
32 30 4 31 sylanbrc ( 𝜑𝐺 : ω –1-1-onto𝑍 )