| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ordirr | 
							⊢ ( Ord  𝐵  →  ¬  𝐵  ∈  𝐵 )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantl | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ¬  𝐵  ∈  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							eleq2 | 
							⊢ ( 𝐴  =  𝐵  →  ( 𝐵  ∈  𝐴  ↔  𝐵  ∈  𝐵 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							notbid | 
							⊢ ( 𝐴  =  𝐵  →  ( ¬  𝐵  ∈  𝐴  ↔  ¬  𝐵  ∈  𝐵 ) )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							syl5ibrcom | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐴  =  𝐵  →  ¬  𝐵  ∈  𝐴 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							pm4.71d | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐴  =  𝐵  ↔  ( 𝐴  =  𝐵  ∧  ¬  𝐵  ∈  𝐴 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							pm5.61 | 
							⊢ ( ( ( 𝐴  =  𝐵  ∨  𝐵  ∈  𝐴 )  ∧  ¬  𝐵  ∈  𝐴 )  ↔  ( 𝐴  =  𝐵  ∧  ¬  𝐵  ∈  𝐴 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							pm4.52 | 
							⊢ ( ( ( 𝐴  =  𝐵  ∨  𝐵  ∈  𝐴 )  ∧  ¬  𝐵  ∈  𝐴 )  ↔  ¬  ( ¬  ( 𝐴  =  𝐵  ∨  𝐵  ∈  𝐴 )  ∨  𝐵  ∈  𝐴 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							bitr3i | 
							⊢ ( ( 𝐴  =  𝐵  ∧  ¬  𝐵  ∈  𝐴 )  ↔  ¬  ( ¬  ( 𝐴  =  𝐵  ∨  𝐵  ∈  𝐴 )  ∨  𝐵  ∈  𝐴 ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							bitrdi | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐴  =  𝐵  ↔  ¬  ( ¬  ( 𝐴  =  𝐵  ∨  𝐵  ∈  𝐴 )  ∨  𝐵  ∈  𝐴 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ordtri2 | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐴  ∈  𝐵  ↔  ¬  ( 𝐴  =  𝐵  ∨  𝐵  ∈  𝐴 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							orbi1d | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( ( 𝐴  ∈  𝐵  ∨  𝐵  ∈  𝐴 )  ↔  ( ¬  ( 𝐴  =  𝐵  ∨  𝐵  ∈  𝐴 )  ∨  𝐵  ∈  𝐴 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							notbid | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( ¬  ( 𝐴  ∈  𝐵  ∨  𝐵  ∈  𝐴 )  ↔  ¬  ( ¬  ( 𝐴  =  𝐵  ∨  𝐵  ∈  𝐴 )  ∨  𝐵  ∈  𝐴 ) ) )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							bitr4d | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐴  =  𝐵  ↔  ¬  ( 𝐴  ∈  𝐵  ∨  𝐵  ∈  𝐴 ) ) )  |