| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 2 |  | om2noseq.2 | ⊢ ( 𝜑  →  𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 3 |  | om2noseq.3 | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  “  ω ) ) | 
						
							| 4 | 1 2 3 | om2noseqf1o | ⊢ ( 𝜑  →  𝐺 : ω –1-1-onto→ 𝑍 ) | 
						
							| 5 |  | epel | ⊢ ( 𝑦  E  𝑧  ↔  𝑦  ∈  𝑧 ) | 
						
							| 6 | 1 2 3 | om2noseqlt2 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ω  ∧  𝑧  ∈  ω ) )  →  ( 𝑦  ∈  𝑧  ↔  ( 𝐺 ‘ 𝑦 )  <s  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 7 | 5 6 | bitrid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ω  ∧  𝑧  ∈  ω ) )  →  ( 𝑦  E  𝑧  ↔  ( 𝐺 ‘ 𝑦 )  <s  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 8 | 7 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ω ∀ 𝑧  ∈  ω ( 𝑦  E  𝑧  ↔  ( 𝐺 ‘ 𝑦 )  <s  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 9 |  | df-isom | ⊢ ( 𝐺  Isom   E  ,   <s  ( ω ,  𝑍 )  ↔  ( 𝐺 : ω –1-1-onto→ 𝑍  ∧  ∀ 𝑦  ∈  ω ∀ 𝑧  ∈  ω ( 𝑦  E  𝑧  ↔  ( 𝐺 ‘ 𝑦 )  <s  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 10 | 4 8 9 | sylanbrc | ⊢ ( 𝜑  →  𝐺  Isom   E  ,   <s  ( ω ,  𝑍 ) ) |