Step |
Hyp |
Ref |
Expression |
1 |
|
om2noseq.1 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
2 |
|
om2noseq.2 |
⊢ ( 𝜑 → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
3 |
|
om2noseq.3 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) ) |
4 |
1 2 3
|
om2noseqf1o |
⊢ ( 𝜑 → 𝐺 : ω –1-1-onto→ 𝑍 ) |
5 |
|
epel |
⊢ ( 𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧 ) |
6 |
1 2 3
|
om2noseqlt2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝑦 ∈ 𝑧 ↔ ( 𝐺 ‘ 𝑦 ) <s ( 𝐺 ‘ 𝑧 ) ) ) |
7 |
5 6
|
bitrid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝑦 E 𝑧 ↔ ( 𝐺 ‘ 𝑦 ) <s ( 𝐺 ‘ 𝑧 ) ) ) |
8 |
7
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( 𝑦 E 𝑧 ↔ ( 𝐺 ‘ 𝑦 ) <s ( 𝐺 ‘ 𝑧 ) ) ) |
9 |
|
df-isom |
⊢ ( 𝐺 Isom E , <s ( ω , 𝑍 ) ↔ ( 𝐺 : ω –1-1-onto→ 𝑍 ∧ ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( 𝑦 E 𝑧 ↔ ( 𝐺 ‘ 𝑦 ) <s ( 𝐺 ‘ 𝑧 ) ) ) ) |
10 |
4 8 9
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 Isom E , <s ( ω , 𝑍 ) ) |