Metamath Proof Explorer


Theorem om2noseqiso

Description: G is an isomorphism from the finite ordinals to a surreal sequence. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 ( 𝜑𝐶 No )
om2noseq.2 ( 𝜑𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) )
om2noseq.3 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) )
Assertion om2noseqiso ( 𝜑𝐺 Isom E , <s ( ω , 𝑍 ) )

Proof

Step Hyp Ref Expression
1 om2noseq.1 ( 𝜑𝐶 No )
2 om2noseq.2 ( 𝜑𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) )
3 om2noseq.3 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) )
4 1 2 3 om2noseqf1o ( 𝜑𝐺 : ω –1-1-onto𝑍 )
5 epel ( 𝑦 E 𝑧𝑦𝑧 )
6 1 2 3 om2noseqlt2 ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝑦𝑧 ↔ ( 𝐺𝑦 ) <s ( 𝐺𝑧 ) ) )
7 5 6 bitrid ( ( 𝜑 ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝑦 E 𝑧 ↔ ( 𝐺𝑦 ) <s ( 𝐺𝑧 ) ) )
8 7 ralrimivva ( 𝜑 → ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( 𝑦 E 𝑧 ↔ ( 𝐺𝑦 ) <s ( 𝐺𝑧 ) ) )
9 df-isom ( 𝐺 Isom E , <s ( ω , 𝑍 ) ↔ ( 𝐺 : ω –1-1-onto𝑍 ∧ ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( 𝑦 E 𝑧 ↔ ( 𝐺𝑦 ) <s ( 𝐺𝑧 ) ) ) )
10 4 8 9 sylanbrc ( 𝜑𝐺 Isom E , <s ( ω , 𝑍 ) )