Metamath Proof Explorer


Theorem om2noseqiso

Description: G is an isomorphism from the finite ordinals to a surreal sequence. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1
|- ( ph -> C e. No )
om2noseq.2
|- ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) )
om2noseq.3
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) )
Assertion om2noseqiso
|- ( ph -> G Isom _E , 

Proof

Step Hyp Ref Expression
1 om2noseq.1
 |-  ( ph -> C e. No )
2 om2noseq.2
 |-  ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) )
3 om2noseq.3
 |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) )
4 1 2 3 om2noseqf1o
 |-  ( ph -> G : _om -1-1-onto-> Z )
5 epel
 |-  ( y _E z <-> y e. z )
6 1 2 3 om2noseqlt2
 |-  ( ( ph /\ ( y e. _om /\ z e. _om ) ) -> ( y e. z <-> ( G ` y ) 
7 5 6 bitrid
 |-  ( ( ph /\ ( y e. _om /\ z e. _om ) ) -> ( y _E z <-> ( G ` y ) 
8 7 ralrimivva
 |-  ( ph -> A. y e. _om A. z e. _om ( y _E z <-> ( G ` y ) 
9 df-isom
 |-  ( G Isom _E ,  ( G : _om -1-1-onto-> Z /\ A. y e. _om A. z e. _om ( y _E z <-> ( G ` y ) 
10 4 8 9 sylanbrc
 |-  ( ph -> G Isom _E ,