| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2noseq.1 |
|- ( ph -> C e. No ) |
| 2 |
|
om2noseq.2 |
|- ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
| 3 |
|
om2noseq.3 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) |
| 4 |
1 2 3
|
om2noseqiso |
|- ( ph -> G Isom _E , |
| 5 |
|
ordom |
|- Ord _om |
| 6 |
4 5
|
jctil |
|- ( ph -> ( Ord _om /\ G Isom _E , |
| 7 |
|
ordwe |
|- ( Ord _om -> _E We _om ) |
| 8 |
5 7
|
ax-mp |
|- _E We _om |
| 9 |
|
isowe |
|- ( G Isom _E , ( _E We _om <-> |
| 10 |
4 9
|
syl |
|- ( ph -> ( _E We _om <-> |
| 11 |
8 10
|
mpbii |
|- ( ph -> |
| 12 |
3
|
noseqex |
|- ( ph -> Z e. _V ) |
| 13 |
|
exse |
|- ( Z e. _V -> |
| 14 |
12 13
|
syl |
|- ( ph -> |
| 15 |
|
eqid |
|- OrdIso ( |
| 16 |
15
|
oieu |
|- ( ( ( ( Ord _om /\ G Isom _E , ( _om = dom OrdIso ( |
| 17 |
11 14 16
|
syl2anc |
|- ( ph -> ( ( Ord _om /\ G Isom _E , ( _om = dom OrdIso ( |
| 18 |
6 17
|
mpbid |
|- ( ph -> ( _om = dom OrdIso ( |
| 19 |
18
|
simprd |
|- ( ph -> G = OrdIso ( |