Metamath Proof Explorer


Theorem om2noseqoi

Description: An alternative definition of G in terms of df-oi . (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1
|- ( ph -> C e. No )
om2noseq.2
|- ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) )
om2noseq.3
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) )
Assertion om2noseqoi
|- ( ph -> G = OrdIso ( 

Proof

Step Hyp Ref Expression
1 om2noseq.1
 |-  ( ph -> C e. No )
2 om2noseq.2
 |-  ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) )
3 om2noseq.3
 |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) )
4 1 2 3 om2noseqiso
 |-  ( ph -> G Isom _E , 
5 ordom
 |-  Ord _om
6 4 5 jctil
 |-  ( ph -> ( Ord _om /\ G Isom _E , 
7 ordwe
 |-  ( Ord _om -> _E We _om )
8 5 7 ax-mp
 |-  _E We _om
9 isowe
 |-  ( G Isom _E ,  ( _E We _om <-> 
10 4 9 syl
 |-  ( ph -> ( _E We _om <-> 
11 8 10 mpbii
 |-  ( ph -> 
12 3 noseqex
 |-  ( ph -> Z e. _V )
13 exse
 |-  ( Z e. _V -> 
14 12 13 syl
 |-  ( ph -> 
15 eqid
 |-  OrdIso ( 
16 15 oieu
 |-  ( (  ( ( Ord _om /\ G Isom _E ,  ( _om = dom OrdIso ( 
17 11 14 16 syl2anc
 |-  ( ph -> ( ( Ord _om /\ G Isom _E ,  ( _om = dom OrdIso ( 
18 6 17 mpbid
 |-  ( ph -> ( _om = dom OrdIso ( 
19 18 simprd
 |-  ( ph -> G = OrdIso (