| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 |  |-  ( ph -> C e. No ) | 
						
							| 2 |  | om2noseq.2 |  |-  ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) | 
						
							| 3 |  | om2noseq.3 |  |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) | 
						
							| 4 | 1 2 3 | om2noseqiso |  |-  ( ph -> G Isom _E ,  | 
						
							| 5 |  | ordom |  |-  Ord _om | 
						
							| 6 | 4 5 | jctil |  |-  ( ph -> ( Ord _om /\ G Isom _E ,  | 
						
							| 7 |  | ordwe |  |-  ( Ord _om -> _E We _om ) | 
						
							| 8 | 5 7 | ax-mp |  |-  _E We _om | 
						
							| 9 |  | isowe |  |-  ( G Isom _E ,  ( _E We _om <->  | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> ( _E We _om <->  | 
						
							| 11 | 8 10 | mpbii |  |-  ( ph ->  | 
						
							| 12 | 3 | noseqex |  |-  ( ph -> Z e. _V ) | 
						
							| 13 |  | exse |  |-  ( Z e. _V ->  | 
						
							| 14 | 12 13 | syl |  |-  ( ph ->  | 
						
							| 15 |  | eqid |  |-  OrdIso (  | 
						
							| 16 | 15 | oieu |  |-  ( (  ( ( Ord _om /\ G Isom _E ,  ( _om = dom OrdIso (  | 
						
							| 17 | 11 14 16 | syl2anc |  |-  ( ph -> ( ( Ord _om /\ G Isom _E ,  ( _om = dom OrdIso (  | 
						
							| 18 | 6 17 | mpbid |  |-  ( ph -> ( _om = dom OrdIso (  | 
						
							| 19 | 18 | simprd |  |-  ( ph -> G = OrdIso (  |