| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 |  |-  ( ph -> C e. No ) | 
						
							| 2 |  | om2noseq.2 |  |-  ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) | 
						
							| 3 |  | om2noseq.3 |  |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) | 
						
							| 4 |  | noseqrdg.1 |  |-  ( ph -> A e. V ) | 
						
							| 5 |  | noseqrdg.2 |  |-  ( ph -> R = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ) | 
						
							| 6 |  | fveq2 |  |-  ( z = (/) -> ( R ` z ) = ( R ` (/) ) ) | 
						
							| 7 |  | fveq2 |  |-  ( z = (/) -> ( G ` z ) = ( G ` (/) ) ) | 
						
							| 8 |  | 2fveq3 |  |-  ( z = (/) -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` (/) ) ) ) | 
						
							| 9 | 7 8 | opeq12d |  |-  ( z = (/) -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. ) | 
						
							| 10 | 6 9 | eqeq12d |  |-  ( z = (/) -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` (/) ) = <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. ) ) | 
						
							| 11 | 10 | imbi2d |  |-  ( z = (/) -> ( ( ph -> ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. ) <-> ( ph -> ( R ` (/) ) = <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. ) ) ) | 
						
							| 12 |  | fveq2 |  |-  ( z = v -> ( R ` z ) = ( R ` v ) ) | 
						
							| 13 |  | fveq2 |  |-  ( z = v -> ( G ` z ) = ( G ` v ) ) | 
						
							| 14 |  | 2fveq3 |  |-  ( z = v -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` v ) ) ) | 
						
							| 15 | 13 14 | opeq12d |  |-  ( z = v -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) | 
						
							| 16 | 12 15 | eqeq12d |  |-  ( z = v -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) | 
						
							| 17 | 16 | imbi2d |  |-  ( z = v -> ( ( ph -> ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. ) <-> ( ph -> ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) ) | 
						
							| 18 |  | fveq2 |  |-  ( z = suc v -> ( R ` z ) = ( R ` suc v ) ) | 
						
							| 19 |  | fveq2 |  |-  ( z = suc v -> ( G ` z ) = ( G ` suc v ) ) | 
						
							| 20 |  | 2fveq3 |  |-  ( z = suc v -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` suc v ) ) ) | 
						
							| 21 | 19 20 | opeq12d |  |-  ( z = suc v -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) | 
						
							| 22 | 18 21 | eqeq12d |  |-  ( z = suc v -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) ) | 
						
							| 23 | 22 | imbi2d |  |-  ( z = suc v -> ( ( ph -> ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. ) <-> ( ph -> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) ) ) | 
						
							| 24 |  | fveq2 |  |-  ( z = B -> ( R ` z ) = ( R ` B ) ) | 
						
							| 25 |  | fveq2 |  |-  ( z = B -> ( G ` z ) = ( G ` B ) ) | 
						
							| 26 |  | 2fveq3 |  |-  ( z = B -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` B ) ) ) | 
						
							| 27 | 25 26 | opeq12d |  |-  ( z = B -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) | 
						
							| 28 | 24 27 | eqeq12d |  |-  ( z = B -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` B ) = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) ) | 
						
							| 29 | 28 | imbi2d |  |-  ( z = B -> ( ( ph -> ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. ) <-> ( ph -> ( R ` B ) = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) ) ) | 
						
							| 30 | 5 | fveq1d |  |-  ( ph -> ( R ` (/) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) ) | 
						
							| 31 |  | opex |  |-  <. C , A >. e. _V | 
						
							| 32 |  | fr0g |  |-  ( <. C , A >. e. _V -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. ) | 
						
							| 33 | 31 32 | ax-mp |  |-  ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. | 
						
							| 34 | 30 33 | eqtrdi |  |-  ( ph -> ( R ` (/) ) = <. C , A >. ) | 
						
							| 35 | 1 2 | om2noseq0 |  |-  ( ph -> ( G ` (/) ) = C ) | 
						
							| 36 | 34 | fveq2d |  |-  ( ph -> ( 2nd ` ( R ` (/) ) ) = ( 2nd ` <. C , A >. ) ) | 
						
							| 37 |  | op2ndg |  |-  ( ( C e. No /\ A e. V ) -> ( 2nd ` <. C , A >. ) = A ) | 
						
							| 38 | 1 4 37 | syl2anc |  |-  ( ph -> ( 2nd ` <. C , A >. ) = A ) | 
						
							| 39 | 36 38 | eqtrd |  |-  ( ph -> ( 2nd ` ( R ` (/) ) ) = A ) | 
						
							| 40 | 35 39 | opeq12d |  |-  ( ph -> <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. = <. C , A >. ) | 
						
							| 41 | 34 40 | eqtr4d |  |-  ( ph -> ( R ` (/) ) = <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. ) | 
						
							| 42 |  | frsuc |  |-  ( v e. _om -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc v ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) ) ) | 
						
							| 43 | 42 | adantl |  |-  ( ( ph /\ v e. _om ) -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc v ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) ) ) | 
						
							| 44 | 5 | fveq1d |  |-  ( ph -> ( R ` suc v ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc v ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ph /\ v e. _om ) -> ( R ` suc v ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc v ) ) | 
						
							| 46 | 5 | fveq1d |  |-  ( ph -> ( R ` v ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) ) | 
						
							| 47 | 46 | fveq2d |  |-  ( ph -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` v ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ v e. _om ) -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` v ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) ) ) | 
						
							| 49 | 43 45 48 | 3eqtr4d |  |-  ( ( ph /\ v e. _om ) -> ( R ` suc v ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` v ) ) ) | 
						
							| 50 | 49 | adantrr |  |-  ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> ( R ` suc v ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` v ) ) ) | 
						
							| 51 |  | fveq2 |  |-  ( ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` v ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) | 
						
							| 52 |  | df-ov |  |-  ( ( G ` v ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` v ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) | 
						
							| 53 |  | fvex |  |-  ( G ` v ) e. _V | 
						
							| 54 |  | fvex |  |-  ( 2nd ` ( R ` v ) ) e. _V | 
						
							| 55 |  | oveq1 |  |-  ( w = ( G ` v ) -> ( w +s 1s ) = ( ( G ` v ) +s 1s ) ) | 
						
							| 56 |  | oveq1 |  |-  ( w = ( G ` v ) -> ( w F z ) = ( ( G ` v ) F z ) ) | 
						
							| 57 | 55 56 | opeq12d |  |-  ( w = ( G ` v ) -> <. ( w +s 1s ) , ( w F z ) >. = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F z ) >. ) | 
						
							| 58 |  | oveq2 |  |-  ( z = ( 2nd ` ( R ` v ) ) -> ( ( G ` v ) F z ) = ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) ) | 
						
							| 59 | 58 | opeq2d |  |-  ( z = ( 2nd ` ( R ` v ) ) -> <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F z ) >. = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) | 
						
							| 60 |  | oveq1 |  |-  ( x = w -> ( x +s 1s ) = ( w +s 1s ) ) | 
						
							| 61 |  | oveq1 |  |-  ( x = w -> ( x F y ) = ( w F y ) ) | 
						
							| 62 | 60 61 | opeq12d |  |-  ( x = w -> <. ( x +s 1s ) , ( x F y ) >. = <. ( w +s 1s ) , ( w F y ) >. ) | 
						
							| 63 |  | oveq2 |  |-  ( y = z -> ( w F y ) = ( w F z ) ) | 
						
							| 64 | 63 | opeq2d |  |-  ( y = z -> <. ( w +s 1s ) , ( w F y ) >. = <. ( w +s 1s ) , ( w F z ) >. ) | 
						
							| 65 | 62 64 | cbvmpov |  |-  ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) = ( w e. _V , z e. _V |-> <. ( w +s 1s ) , ( w F z ) >. ) | 
						
							| 66 |  | opex |  |-  <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. e. _V | 
						
							| 67 | 57 59 65 66 | ovmpo |  |-  ( ( ( G ` v ) e. _V /\ ( 2nd ` ( R ` v ) ) e. _V ) -> ( ( G ` v ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` v ) ) ) = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) | 
						
							| 68 | 53 54 67 | mp2an |  |-  ( ( G ` v ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` v ) ) ) = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. | 
						
							| 69 | 52 68 | eqtr3i |  |-  ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. | 
						
							| 70 | 51 69 | eqtrdi |  |-  ( ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` v ) ) = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) | 
						
							| 71 | 70 | ad2antll |  |-  ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` v ) ) = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) | 
						
							| 72 | 50 71 | eqtrd |  |-  ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> ( R ` suc v ) = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) | 
						
							| 73 | 1 | adantr |  |-  ( ( ph /\ v e. _om ) -> C e. No ) | 
						
							| 74 | 2 | adantr |  |-  ( ( ph /\ v e. _om ) -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) | 
						
							| 75 |  | simpr |  |-  ( ( ph /\ v e. _om ) -> v e. _om ) | 
						
							| 76 | 73 74 75 | om2noseqsuc |  |-  ( ( ph /\ v e. _om ) -> ( G ` suc v ) = ( ( G ` v ) +s 1s ) ) | 
						
							| 77 | 76 | adantrr |  |-  ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> ( G ` suc v ) = ( ( G ` v ) +s 1s ) ) | 
						
							| 78 | 72 | fveq2d |  |-  ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> ( 2nd ` ( R ` suc v ) ) = ( 2nd ` <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) ) | 
						
							| 79 |  | ovex |  |-  ( ( G ` v ) +s 1s ) e. _V | 
						
							| 80 |  | ovex |  |-  ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) e. _V | 
						
							| 81 | 79 80 | op2nd |  |-  ( 2nd ` <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) = ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) | 
						
							| 82 | 78 81 | eqtrdi |  |-  ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> ( 2nd ` ( R ` suc v ) ) = ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) ) | 
						
							| 83 | 77 82 | opeq12d |  |-  ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) | 
						
							| 84 | 72 83 | eqtr4d |  |-  ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) | 
						
							| 85 | 84 | exp32 |  |-  ( ph -> ( v e. _om -> ( ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. -> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) ) ) | 
						
							| 86 | 85 | com12 |  |-  ( v e. _om -> ( ph -> ( ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. -> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) ) ) | 
						
							| 87 | 86 | a2d |  |-  ( v e. _om -> ( ( ph -> ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) -> ( ph -> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) ) ) | 
						
							| 88 | 11 17 23 29 41 87 | finds |  |-  ( B e. _om -> ( ph -> ( R ` B ) = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) ) | 
						
							| 89 | 88 | impcom |  |-  ( ( ph /\ B e. _om ) -> ( R ` B ) = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) |