| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2noseq.1 |
|- ( ph -> C e. No ) |
| 2 |
|
om2noseq.2 |
|- ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
| 3 |
|
om2noseq.3 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) |
| 4 |
|
noseqrdg.1 |
|- ( ph -> A e. V ) |
| 5 |
|
noseqrdg.2 |
|- ( ph -> R = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ) |
| 6 |
|
fveq2 |
|- ( z = (/) -> ( R ` z ) = ( R ` (/) ) ) |
| 7 |
|
fveq2 |
|- ( z = (/) -> ( G ` z ) = ( G ` (/) ) ) |
| 8 |
|
2fveq3 |
|- ( z = (/) -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` (/) ) ) ) |
| 9 |
7 8
|
opeq12d |
|- ( z = (/) -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. ) |
| 10 |
6 9
|
eqeq12d |
|- ( z = (/) -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` (/) ) = <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. ) ) |
| 11 |
10
|
imbi2d |
|- ( z = (/) -> ( ( ph -> ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. ) <-> ( ph -> ( R ` (/) ) = <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. ) ) ) |
| 12 |
|
fveq2 |
|- ( z = v -> ( R ` z ) = ( R ` v ) ) |
| 13 |
|
fveq2 |
|- ( z = v -> ( G ` z ) = ( G ` v ) ) |
| 14 |
|
2fveq3 |
|- ( z = v -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` v ) ) ) |
| 15 |
13 14
|
opeq12d |
|- ( z = v -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) |
| 16 |
12 15
|
eqeq12d |
|- ( z = v -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) |
| 17 |
16
|
imbi2d |
|- ( z = v -> ( ( ph -> ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. ) <-> ( ph -> ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) ) |
| 18 |
|
fveq2 |
|- ( z = suc v -> ( R ` z ) = ( R ` suc v ) ) |
| 19 |
|
fveq2 |
|- ( z = suc v -> ( G ` z ) = ( G ` suc v ) ) |
| 20 |
|
2fveq3 |
|- ( z = suc v -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` suc v ) ) ) |
| 21 |
19 20
|
opeq12d |
|- ( z = suc v -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) |
| 22 |
18 21
|
eqeq12d |
|- ( z = suc v -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) ) |
| 23 |
22
|
imbi2d |
|- ( z = suc v -> ( ( ph -> ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. ) <-> ( ph -> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) ) ) |
| 24 |
|
fveq2 |
|- ( z = B -> ( R ` z ) = ( R ` B ) ) |
| 25 |
|
fveq2 |
|- ( z = B -> ( G ` z ) = ( G ` B ) ) |
| 26 |
|
2fveq3 |
|- ( z = B -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` B ) ) ) |
| 27 |
25 26
|
opeq12d |
|- ( z = B -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) |
| 28 |
24 27
|
eqeq12d |
|- ( z = B -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` B ) = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) ) |
| 29 |
28
|
imbi2d |
|- ( z = B -> ( ( ph -> ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. ) <-> ( ph -> ( R ` B ) = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) ) ) |
| 30 |
5
|
fveq1d |
|- ( ph -> ( R ` (/) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) ) |
| 31 |
|
opex |
|- <. C , A >. e. _V |
| 32 |
|
fr0g |
|- ( <. C , A >. e. _V -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. ) |
| 33 |
31 32
|
ax-mp |
|- ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. |
| 34 |
30 33
|
eqtrdi |
|- ( ph -> ( R ` (/) ) = <. C , A >. ) |
| 35 |
1 2
|
om2noseq0 |
|- ( ph -> ( G ` (/) ) = C ) |
| 36 |
34
|
fveq2d |
|- ( ph -> ( 2nd ` ( R ` (/) ) ) = ( 2nd ` <. C , A >. ) ) |
| 37 |
|
op2ndg |
|- ( ( C e. No /\ A e. V ) -> ( 2nd ` <. C , A >. ) = A ) |
| 38 |
1 4 37
|
syl2anc |
|- ( ph -> ( 2nd ` <. C , A >. ) = A ) |
| 39 |
36 38
|
eqtrd |
|- ( ph -> ( 2nd ` ( R ` (/) ) ) = A ) |
| 40 |
35 39
|
opeq12d |
|- ( ph -> <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. = <. C , A >. ) |
| 41 |
34 40
|
eqtr4d |
|- ( ph -> ( R ` (/) ) = <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. ) |
| 42 |
|
frsuc |
|- ( v e. _om -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc v ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) ) ) |
| 43 |
42
|
adantl |
|- ( ( ph /\ v e. _om ) -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc v ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) ) ) |
| 44 |
5
|
fveq1d |
|- ( ph -> ( R ` suc v ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc v ) ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ v e. _om ) -> ( R ` suc v ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc v ) ) |
| 46 |
5
|
fveq1d |
|- ( ph -> ( R ` v ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) ) |
| 47 |
46
|
fveq2d |
|- ( ph -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` v ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) ) ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ v e. _om ) -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` v ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) ) ) |
| 49 |
43 45 48
|
3eqtr4d |
|- ( ( ph /\ v e. _om ) -> ( R ` suc v ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` v ) ) ) |
| 50 |
49
|
adantrr |
|- ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> ( R ` suc v ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` v ) ) ) |
| 51 |
|
fveq2 |
|- ( ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` v ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) |
| 52 |
|
df-ov |
|- ( ( G ` v ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` v ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) |
| 53 |
|
fvex |
|- ( G ` v ) e. _V |
| 54 |
|
fvex |
|- ( 2nd ` ( R ` v ) ) e. _V |
| 55 |
|
oveq1 |
|- ( w = ( G ` v ) -> ( w +s 1s ) = ( ( G ` v ) +s 1s ) ) |
| 56 |
|
oveq1 |
|- ( w = ( G ` v ) -> ( w F z ) = ( ( G ` v ) F z ) ) |
| 57 |
55 56
|
opeq12d |
|- ( w = ( G ` v ) -> <. ( w +s 1s ) , ( w F z ) >. = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F z ) >. ) |
| 58 |
|
oveq2 |
|- ( z = ( 2nd ` ( R ` v ) ) -> ( ( G ` v ) F z ) = ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) ) |
| 59 |
58
|
opeq2d |
|- ( z = ( 2nd ` ( R ` v ) ) -> <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F z ) >. = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 60 |
|
oveq1 |
|- ( x = w -> ( x +s 1s ) = ( w +s 1s ) ) |
| 61 |
|
oveq1 |
|- ( x = w -> ( x F y ) = ( w F y ) ) |
| 62 |
60 61
|
opeq12d |
|- ( x = w -> <. ( x +s 1s ) , ( x F y ) >. = <. ( w +s 1s ) , ( w F y ) >. ) |
| 63 |
|
oveq2 |
|- ( y = z -> ( w F y ) = ( w F z ) ) |
| 64 |
63
|
opeq2d |
|- ( y = z -> <. ( w +s 1s ) , ( w F y ) >. = <. ( w +s 1s ) , ( w F z ) >. ) |
| 65 |
62 64
|
cbvmpov |
|- ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) = ( w e. _V , z e. _V |-> <. ( w +s 1s ) , ( w F z ) >. ) |
| 66 |
|
opex |
|- <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. e. _V |
| 67 |
57 59 65 66
|
ovmpo |
|- ( ( ( G ` v ) e. _V /\ ( 2nd ` ( R ` v ) ) e. _V ) -> ( ( G ` v ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` v ) ) ) = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 68 |
53 54 67
|
mp2an |
|- ( ( G ` v ) ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ( 2nd ` ( R ` v ) ) ) = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. |
| 69 |
52 68
|
eqtr3i |
|- ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. |
| 70 |
51 69
|
eqtrdi |
|- ( ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` v ) ) = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 71 |
70
|
ad2antll |
|- ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( x F y ) >. ) ` ( R ` v ) ) = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 72 |
50 71
|
eqtrd |
|- ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> ( R ` suc v ) = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 73 |
1
|
adantr |
|- ( ( ph /\ v e. _om ) -> C e. No ) |
| 74 |
2
|
adantr |
|- ( ( ph /\ v e. _om ) -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
| 75 |
|
simpr |
|- ( ( ph /\ v e. _om ) -> v e. _om ) |
| 76 |
73 74 75
|
om2noseqsuc |
|- ( ( ph /\ v e. _om ) -> ( G ` suc v ) = ( ( G ` v ) +s 1s ) ) |
| 77 |
76
|
adantrr |
|- ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> ( G ` suc v ) = ( ( G ` v ) +s 1s ) ) |
| 78 |
72
|
fveq2d |
|- ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> ( 2nd ` ( R ` suc v ) ) = ( 2nd ` <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) ) |
| 79 |
|
ovex |
|- ( ( G ` v ) +s 1s ) e. _V |
| 80 |
|
ovex |
|- ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) e. _V |
| 81 |
79 80
|
op2nd |
|- ( 2nd ` <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) = ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) |
| 82 |
78 81
|
eqtrdi |
|- ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> ( 2nd ` ( R ` suc v ) ) = ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) ) |
| 83 |
77 82
|
opeq12d |
|- ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. = <. ( ( G ` v ) +s 1s ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 84 |
72 83
|
eqtr4d |
|- ( ( ph /\ ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) -> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) |
| 85 |
84
|
exp32 |
|- ( ph -> ( v e. _om -> ( ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. -> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) ) ) |
| 86 |
85
|
com12 |
|- ( v e. _om -> ( ph -> ( ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. -> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) ) ) |
| 87 |
86
|
a2d |
|- ( v e. _om -> ( ( ph -> ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) -> ( ph -> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) ) ) |
| 88 |
11 17 23 29 41 87
|
finds |
|- ( B e. _om -> ( ph -> ( R ` B ) = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) ) |
| 89 |
88
|
impcom |
|- ( ( ph /\ B e. _om ) -> ( R ` B ) = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) |