| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2noseq.1 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 2 |
|
om2noseq.2 |
⊢ ( 𝜑 → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
| 3 |
|
om2noseq.3 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) ) |
| 4 |
|
noseqrdg.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
noseqrdg.2 |
⊢ ( 𝜑 → 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑧 = ∅ → ( 𝑅 ‘ 𝑧 ) = ( 𝑅 ‘ ∅ ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑧 = ∅ → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ∅ ) ) |
| 8 |
|
2fveq3 |
⊢ ( 𝑧 = ∅ → ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) ) |
| 9 |
7 8
|
opeq12d |
⊢ ( 𝑧 = ∅ → 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 = 〈 ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) 〉 ) |
| 10 |
6 9
|
eqeq12d |
⊢ ( 𝑧 = ∅ → ( ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ↔ ( 𝑅 ‘ ∅ ) = 〈 ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) 〉 ) ) |
| 11 |
10
|
imbi2d |
⊢ ( 𝑧 = ∅ → ( ( 𝜑 → ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ) ↔ ( 𝜑 → ( 𝑅 ‘ ∅ ) = 〈 ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) 〉 ) ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑧 = 𝑣 → ( 𝑅 ‘ 𝑧 ) = ( 𝑅 ‘ 𝑣 ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑧 = 𝑣 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑣 ) ) |
| 14 |
|
2fveq3 |
⊢ ( 𝑧 = 𝑣 → ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) |
| 15 |
13 14
|
opeq12d |
⊢ ( 𝑧 = 𝑣 → 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) |
| 16 |
12 15
|
eqeq12d |
⊢ ( 𝑧 = 𝑣 → ( ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ↔ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) |
| 17 |
16
|
imbi2d |
⊢ ( 𝑧 = 𝑣 → ( ( 𝜑 → ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ) ↔ ( 𝜑 → ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑧 = suc 𝑣 → ( 𝑅 ‘ 𝑧 ) = ( 𝑅 ‘ suc 𝑣 ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑧 = suc 𝑣 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ suc 𝑣 ) ) |
| 20 |
|
2fveq3 |
⊢ ( 𝑧 = suc 𝑣 → ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) ) |
| 21 |
19 20
|
opeq12d |
⊢ ( 𝑧 = suc 𝑣 → 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 = 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 ) |
| 22 |
18 21
|
eqeq12d |
⊢ ( 𝑧 = suc 𝑣 → ( ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ↔ ( 𝑅 ‘ suc 𝑣 ) = 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 ) ) |
| 23 |
22
|
imbi2d |
⊢ ( 𝑧 = suc 𝑣 → ( ( 𝜑 → ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ) ↔ ( 𝜑 → ( 𝑅 ‘ suc 𝑣 ) = 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 ) ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝑅 ‘ 𝑧 ) = ( 𝑅 ‘ 𝐵 ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐵 ) ) |
| 26 |
|
2fveq3 |
⊢ ( 𝑧 = 𝐵 → ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 2nd ‘ ( 𝑅 ‘ 𝐵 ) ) ) |
| 27 |
25 26
|
opeq12d |
⊢ ( 𝑧 = 𝐵 → 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 = 〈 ( 𝐺 ‘ 𝐵 ) , ( 2nd ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) |
| 28 |
24 27
|
eqeq12d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ↔ ( 𝑅 ‘ 𝐵 ) = 〈 ( 𝐺 ‘ 𝐵 ) , ( 2nd ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) ) |
| 29 |
28
|
imbi2d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝜑 → ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ) ↔ ( 𝜑 → ( 𝑅 ‘ 𝐵 ) = 〈 ( 𝐺 ‘ 𝐵 ) , ( 2nd ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) ) ) |
| 30 |
5
|
fveq1d |
⊢ ( 𝜑 → ( 𝑅 ‘ ∅ ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) ) |
| 31 |
|
opex |
⊢ 〈 𝐶 , 𝐴 〉 ∈ V |
| 32 |
|
fr0g |
⊢ ( 〈 𝐶 , 𝐴 〉 ∈ V → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 ) |
| 33 |
31 32
|
ax-mp |
⊢ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 |
| 34 |
30 33
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑅 ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 ) |
| 35 |
1 2
|
om2noseq0 |
⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = 𝐶 ) |
| 36 |
34
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) = ( 2nd ‘ 〈 𝐶 , 𝐴 〉 ) ) |
| 37 |
|
op2ndg |
⊢ ( ( 𝐶 ∈ No ∧ 𝐴 ∈ 𝑉 ) → ( 2nd ‘ 〈 𝐶 , 𝐴 〉 ) = 𝐴 ) |
| 38 |
1 4 37
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐶 , 𝐴 〉 ) = 𝐴 ) |
| 39 |
36 38
|
eqtrd |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) = 𝐴 ) |
| 40 |
35 39
|
opeq12d |
⊢ ( 𝜑 → 〈 ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) 〉 = 〈 𝐶 , 𝐴 〉 ) |
| 41 |
34 40
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑅 ‘ ∅ ) = 〈 ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) 〉 ) |
| 42 |
|
frsuc |
⊢ ( 𝑣 ∈ ω → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc 𝑣 ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ 𝑣 ) ) ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc 𝑣 ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ 𝑣 ) ) ) |
| 44 |
5
|
fveq1d |
⊢ ( 𝜑 → ( 𝑅 ‘ suc 𝑣 ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc 𝑣 ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ω ) → ( 𝑅 ‘ suc 𝑣 ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc 𝑣 ) ) |
| 46 |
5
|
fveq1d |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝑣 ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ 𝑣 ) ) |
| 47 |
46
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ 𝑣 ) ) ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ω ) → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ 𝑣 ) ) ) |
| 49 |
43 45 48
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ω ) → ( 𝑅 ‘ suc 𝑣 ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) ) |
| 50 |
49
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) → ( 𝑅 ‘ suc 𝑣 ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) ) |
| 51 |
|
fveq2 |
⊢ ( ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) |
| 52 |
|
df-ov |
⊢ ( ( 𝐺 ‘ 𝑣 ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) |
| 53 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑣 ) ∈ V |
| 54 |
|
fvex |
⊢ ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ∈ V |
| 55 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑣 ) → ( 𝑤 +s 1s ) = ( ( 𝐺 ‘ 𝑣 ) +s 1s ) ) |
| 56 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑣 ) → ( 𝑤 𝐹 𝑧 ) = ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 ) ) |
| 57 |
55 56
|
opeq12d |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑣 ) → 〈 ( 𝑤 +s 1s ) , ( 𝑤 𝐹 𝑧 ) 〉 = 〈 ( ( 𝐺 ‘ 𝑣 ) +s 1s ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 ) 〉 ) |
| 58 |
|
oveq2 |
⊢ ( 𝑧 = ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) → ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 ) = ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) ) |
| 59 |
58
|
opeq2d |
⊢ ( 𝑧 = ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) → 〈 ( ( 𝐺 ‘ 𝑣 ) +s 1s ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 ) 〉 = 〈 ( ( 𝐺 ‘ 𝑣 ) +s 1s ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
| 60 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 +s 1s ) = ( 𝑤 +s 1s ) ) |
| 61 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 𝐹 𝑦 ) = ( 𝑤 𝐹 𝑦 ) ) |
| 62 |
60 61
|
opeq12d |
⊢ ( 𝑥 = 𝑤 → 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 = 〈 ( 𝑤 +s 1s ) , ( 𝑤 𝐹 𝑦 ) 〉 ) |
| 63 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 𝐹 𝑦 ) = ( 𝑤 𝐹 𝑧 ) ) |
| 64 |
63
|
opeq2d |
⊢ ( 𝑦 = 𝑧 → 〈 ( 𝑤 +s 1s ) , ( 𝑤 𝐹 𝑦 ) 〉 = 〈 ( 𝑤 +s 1s ) , ( 𝑤 𝐹 𝑧 ) 〉 ) |
| 65 |
62 64
|
cbvmpov |
⊢ ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) = ( 𝑤 ∈ V , 𝑧 ∈ V ↦ 〈 ( 𝑤 +s 1s ) , ( 𝑤 𝐹 𝑧 ) 〉 ) |
| 66 |
|
opex |
⊢ 〈 ( ( 𝐺 ‘ 𝑣 ) +s 1s ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ∈ V |
| 67 |
57 59 65 66
|
ovmpo |
⊢ ( ( ( 𝐺 ‘ 𝑣 ) ∈ V ∧ ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ∈ V ) → ( ( 𝐺 ‘ 𝑣 ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) = 〈 ( ( 𝐺 ‘ 𝑣 ) +s 1s ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
| 68 |
53 54 67
|
mp2an |
⊢ ( ( 𝐺 ‘ 𝑣 ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) = 〈 ( ( 𝐺 ‘ 𝑣 ) +s 1s ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 |
| 69 |
52 68
|
eqtr3i |
⊢ ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) = 〈 ( ( 𝐺 ‘ 𝑣 ) +s 1s ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 |
| 70 |
51 69
|
eqtrdi |
⊢ ( ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) = 〈 ( ( 𝐺 ‘ 𝑣 ) +s 1s ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
| 71 |
70
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) = 〈 ( ( 𝐺 ‘ 𝑣 ) +s 1s ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
| 72 |
50 71
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) → ( 𝑅 ‘ suc 𝑣 ) = 〈 ( ( 𝐺 ‘ 𝑣 ) +s 1s ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
| 73 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ω ) → 𝐶 ∈ No ) |
| 74 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ω ) → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
| 75 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ω ) → 𝑣 ∈ ω ) |
| 76 |
73 74 75
|
om2noseqsuc |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ω ) → ( 𝐺 ‘ suc 𝑣 ) = ( ( 𝐺 ‘ 𝑣 ) +s 1s ) ) |
| 77 |
76
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) → ( 𝐺 ‘ suc 𝑣 ) = ( ( 𝐺 ‘ 𝑣 ) +s 1s ) ) |
| 78 |
72
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) → ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) = ( 2nd ‘ 〈 ( ( 𝐺 ‘ 𝑣 ) +s 1s ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) ) |
| 79 |
|
ovex |
⊢ ( ( 𝐺 ‘ 𝑣 ) +s 1s ) ∈ V |
| 80 |
|
ovex |
⊢ ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) ∈ V |
| 81 |
79 80
|
op2nd |
⊢ ( 2nd ‘ 〈 ( ( 𝐺 ‘ 𝑣 ) +s 1s ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) = ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) |
| 82 |
78 81
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) → ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) = ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) ) |
| 83 |
77 82
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) → 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 = 〈 ( ( 𝐺 ‘ 𝑣 ) +s 1s ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
| 84 |
72 83
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) → ( 𝑅 ‘ suc 𝑣 ) = 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 ) |
| 85 |
84
|
exp32 |
⊢ ( 𝜑 → ( 𝑣 ∈ ω → ( ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 → ( 𝑅 ‘ suc 𝑣 ) = 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 ) ) ) |
| 86 |
85
|
com12 |
⊢ ( 𝑣 ∈ ω → ( 𝜑 → ( ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 → ( 𝑅 ‘ suc 𝑣 ) = 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 ) ) ) |
| 87 |
86
|
a2d |
⊢ ( 𝑣 ∈ ω → ( ( 𝜑 → ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) → ( 𝜑 → ( 𝑅 ‘ suc 𝑣 ) = 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 ) ) ) |
| 88 |
11 17 23 29 41 87
|
finds |
⊢ ( 𝐵 ∈ ω → ( 𝜑 → ( 𝑅 ‘ 𝐵 ) = 〈 ( 𝐺 ‘ 𝐵 ) , ( 2nd ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) ) |
| 89 |
88
|
impcom |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ω ) → ( 𝑅 ‘ 𝐵 ) = 〈 ( 𝐺 ‘ 𝐵 ) , ( 2nd ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) |