| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 2 |  | om2noseq.2 | ⊢ ( 𝜑  →  𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 3 |  | om2noseq.3 | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  “  ω ) ) | 
						
							| 4 |  | noseqrdg.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | noseqrdg.2 | ⊢ ( 𝜑  →  𝑅  =  ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑧  =  ∅  →  ( 𝑅 ‘ 𝑧 )  =  ( 𝑅 ‘ ∅ ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑧  =  ∅  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ ∅ ) ) | 
						
							| 8 |  | 2fveq3 | ⊢ ( 𝑧  =  ∅  →  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) )  =  ( 2nd  ‘ ( 𝑅 ‘ ∅ ) ) ) | 
						
							| 9 | 7 8 | opeq12d | ⊢ ( 𝑧  =  ∅  →  〈 ( 𝐺 ‘ 𝑧 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) ) 〉  =  〈 ( 𝐺 ‘ ∅ ) ,  ( 2nd  ‘ ( 𝑅 ‘ ∅ ) ) 〉 ) | 
						
							| 10 | 6 9 | eqeq12d | ⊢ ( 𝑧  =  ∅  →  ( ( 𝑅 ‘ 𝑧 )  =  〈 ( 𝐺 ‘ 𝑧 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) ) 〉  ↔  ( 𝑅 ‘ ∅ )  =  〈 ( 𝐺 ‘ ∅ ) ,  ( 2nd  ‘ ( 𝑅 ‘ ∅ ) ) 〉 ) ) | 
						
							| 11 | 10 | imbi2d | ⊢ ( 𝑧  =  ∅  →  ( ( 𝜑  →  ( 𝑅 ‘ 𝑧 )  =  〈 ( 𝐺 ‘ 𝑧 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 )  ↔  ( 𝜑  →  ( 𝑅 ‘ ∅ )  =  〈 ( 𝐺 ‘ ∅ ) ,  ( 2nd  ‘ ( 𝑅 ‘ ∅ ) ) 〉 ) ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑧  =  𝑣  →  ( 𝑅 ‘ 𝑧 )  =  ( 𝑅 ‘ 𝑣 ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑧  =  𝑣  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑣 ) ) | 
						
							| 14 |  | 2fveq3 | ⊢ ( 𝑧  =  𝑣  →  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) )  =  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) ) | 
						
							| 15 | 13 14 | opeq12d | ⊢ ( 𝑧  =  𝑣  →  〈 ( 𝐺 ‘ 𝑧 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) ) 〉  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) | 
						
							| 16 | 12 15 | eqeq12d | ⊢ ( 𝑧  =  𝑣  →  ( ( 𝑅 ‘ 𝑧 )  =  〈 ( 𝐺 ‘ 𝑧 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) ) 〉  ↔  ( 𝑅 ‘ 𝑣 )  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) | 
						
							| 17 | 16 | imbi2d | ⊢ ( 𝑧  =  𝑣  →  ( ( 𝜑  →  ( 𝑅 ‘ 𝑧 )  =  〈 ( 𝐺 ‘ 𝑧 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 )  ↔  ( 𝜑  →  ( 𝑅 ‘ 𝑣 )  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑧  =  suc  𝑣  →  ( 𝑅 ‘ 𝑧 )  =  ( 𝑅 ‘ suc  𝑣 ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑧  =  suc  𝑣  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ suc  𝑣 ) ) | 
						
							| 20 |  | 2fveq3 | ⊢ ( 𝑧  =  suc  𝑣  →  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) )  =  ( 2nd  ‘ ( 𝑅 ‘ suc  𝑣 ) ) ) | 
						
							| 21 | 19 20 | opeq12d | ⊢ ( 𝑧  =  suc  𝑣  →  〈 ( 𝐺 ‘ 𝑧 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) ) 〉  =  〈 ( 𝐺 ‘ suc  𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ suc  𝑣 ) ) 〉 ) | 
						
							| 22 | 18 21 | eqeq12d | ⊢ ( 𝑧  =  suc  𝑣  →  ( ( 𝑅 ‘ 𝑧 )  =  〈 ( 𝐺 ‘ 𝑧 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) ) 〉  ↔  ( 𝑅 ‘ suc  𝑣 )  =  〈 ( 𝐺 ‘ suc  𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ suc  𝑣 ) ) 〉 ) ) | 
						
							| 23 | 22 | imbi2d | ⊢ ( 𝑧  =  suc  𝑣  →  ( ( 𝜑  →  ( 𝑅 ‘ 𝑧 )  =  〈 ( 𝐺 ‘ 𝑧 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 )  ↔  ( 𝜑  →  ( 𝑅 ‘ suc  𝑣 )  =  〈 ( 𝐺 ‘ suc  𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ suc  𝑣 ) ) 〉 ) ) ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑧  =  𝐵  →  ( 𝑅 ‘ 𝑧 )  =  ( 𝑅 ‘ 𝐵 ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑧  =  𝐵  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐵 ) ) | 
						
							| 26 |  | 2fveq3 | ⊢ ( 𝑧  =  𝐵  →  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) )  =  ( 2nd  ‘ ( 𝑅 ‘ 𝐵 ) ) ) | 
						
							| 27 | 25 26 | opeq12d | ⊢ ( 𝑧  =  𝐵  →  〈 ( 𝐺 ‘ 𝑧 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) ) 〉  =  〈 ( 𝐺 ‘ 𝐵 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) | 
						
							| 28 | 24 27 | eqeq12d | ⊢ ( 𝑧  =  𝐵  →  ( ( 𝑅 ‘ 𝑧 )  =  〈 ( 𝐺 ‘ 𝑧 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) ) 〉  ↔  ( 𝑅 ‘ 𝐵 )  =  〈 ( 𝐺 ‘ 𝐵 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) ) | 
						
							| 29 | 28 | imbi2d | ⊢ ( 𝑧  =  𝐵  →  ( ( 𝜑  →  ( 𝑅 ‘ 𝑧 )  =  〈 ( 𝐺 ‘ 𝑧 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 )  ↔  ( 𝜑  →  ( 𝑅 ‘ 𝐵 )  =  〈 ( 𝐺 ‘ 𝐵 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) ) ) | 
						
							| 30 | 5 | fveq1d | ⊢ ( 𝜑  →  ( 𝑅 ‘ ∅ )  =  ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ ∅ ) ) | 
						
							| 31 |  | opex | ⊢ 〈 𝐶 ,  𝐴 〉  ∈  V | 
						
							| 32 |  | fr0g | ⊢ ( 〈 𝐶 ,  𝐴 〉  ∈  V  →  ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ ∅ )  =  〈 𝐶 ,  𝐴 〉 ) | 
						
							| 33 | 31 32 | ax-mp | ⊢ ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ ∅ )  =  〈 𝐶 ,  𝐴 〉 | 
						
							| 34 | 30 33 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑅 ‘ ∅ )  =  〈 𝐶 ,  𝐴 〉 ) | 
						
							| 35 | 1 2 | om2noseq0 | ⊢ ( 𝜑  →  ( 𝐺 ‘ ∅ )  =  𝐶 ) | 
						
							| 36 | 34 | fveq2d | ⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝑅 ‘ ∅ ) )  =  ( 2nd  ‘ 〈 𝐶 ,  𝐴 〉 ) ) | 
						
							| 37 |  | op2ndg | ⊢ ( ( 𝐶  ∈   No   ∧  𝐴  ∈  𝑉 )  →  ( 2nd  ‘ 〈 𝐶 ,  𝐴 〉 )  =  𝐴 ) | 
						
							| 38 | 1 4 37 | syl2anc | ⊢ ( 𝜑  →  ( 2nd  ‘ 〈 𝐶 ,  𝐴 〉 )  =  𝐴 ) | 
						
							| 39 | 36 38 | eqtrd | ⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝑅 ‘ ∅ ) )  =  𝐴 ) | 
						
							| 40 | 35 39 | opeq12d | ⊢ ( 𝜑  →  〈 ( 𝐺 ‘ ∅ ) ,  ( 2nd  ‘ ( 𝑅 ‘ ∅ ) ) 〉  =  〈 𝐶 ,  𝐴 〉 ) | 
						
							| 41 | 34 40 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑅 ‘ ∅ )  =  〈 ( 𝐺 ‘ ∅ ) ,  ( 2nd  ‘ ( 𝑅 ‘ ∅ ) ) 〉 ) | 
						
							| 42 |  | frsuc | ⊢ ( 𝑣  ∈  ω  →  ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ suc  𝑣 )  =  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ 𝑣 ) ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ω )  →  ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ suc  𝑣 )  =  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ 𝑣 ) ) ) | 
						
							| 44 | 5 | fveq1d | ⊢ ( 𝜑  →  ( 𝑅 ‘ suc  𝑣 )  =  ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ suc  𝑣 ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ω )  →  ( 𝑅 ‘ suc  𝑣 )  =  ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ suc  𝑣 ) ) | 
						
							| 46 | 5 | fveq1d | ⊢ ( 𝜑  →  ( 𝑅 ‘ 𝑣 )  =  ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ 𝑣 ) ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) )  =  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ 𝑣 ) ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ω )  →  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) )  =  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ 𝑣 ) ) ) | 
						
							| 49 | 43 45 48 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ω )  →  ( 𝑅 ‘ suc  𝑣 )  =  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) ) | 
						
							| 50 | 49 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  ( 𝑅 ‘ 𝑣 )  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) )  →  ( 𝑅 ‘ suc  𝑣 )  =  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) ) | 
						
							| 51 |  | fveq2 | ⊢ ( ( 𝑅 ‘ 𝑣 )  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉  →  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) )  =  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) | 
						
							| 52 |  | df-ov | ⊢ ( ( 𝐺 ‘ 𝑣 ) ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) )  =  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) | 
						
							| 53 |  | fvex | ⊢ ( 𝐺 ‘ 𝑣 )  ∈  V | 
						
							| 54 |  | fvex | ⊢ ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) )  ∈  V | 
						
							| 55 |  | oveq1 | ⊢ ( 𝑤  =  ( 𝐺 ‘ 𝑣 )  →  ( 𝑤  +s   1s  )  =  ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ) | 
						
							| 56 |  | oveq1 | ⊢ ( 𝑤  =  ( 𝐺 ‘ 𝑣 )  →  ( 𝑤 𝐹 𝑧 )  =  ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 ) ) | 
						
							| 57 | 55 56 | opeq12d | ⊢ ( 𝑤  =  ( 𝐺 ‘ 𝑣 )  →  〈 ( 𝑤  +s   1s  ) ,  ( 𝑤 𝐹 𝑧 ) 〉  =  〈 ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ,  ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 ) 〉 ) | 
						
							| 58 |  | oveq2 | ⊢ ( 𝑧  =  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) )  →  ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 )  =  ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) ) ) | 
						
							| 59 | 58 | opeq2d | ⊢ ( 𝑧  =  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) )  →  〈 ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ,  ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 ) 〉  =  〈 ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ,  ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) | 
						
							| 60 |  | oveq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  +s   1s  )  =  ( 𝑤  +s   1s  ) ) | 
						
							| 61 |  | oveq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥 𝐹 𝑦 )  =  ( 𝑤 𝐹 𝑦 ) ) | 
						
							| 62 | 60 61 | opeq12d | ⊢ ( 𝑥  =  𝑤  →  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉  =  〈 ( 𝑤  +s   1s  ) ,  ( 𝑤 𝐹 𝑦 ) 〉 ) | 
						
							| 63 |  | oveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑤 𝐹 𝑦 )  =  ( 𝑤 𝐹 𝑧 ) ) | 
						
							| 64 | 63 | opeq2d | ⊢ ( 𝑦  =  𝑧  →  〈 ( 𝑤  +s   1s  ) ,  ( 𝑤 𝐹 𝑦 ) 〉  =  〈 ( 𝑤  +s   1s  ) ,  ( 𝑤 𝐹 𝑧 ) 〉 ) | 
						
							| 65 | 62 64 | cbvmpov | ⊢ ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 )  =  ( 𝑤  ∈  V ,  𝑧  ∈  V  ↦  〈 ( 𝑤  +s   1s  ) ,  ( 𝑤 𝐹 𝑧 ) 〉 ) | 
						
							| 66 |  | opex | ⊢ 〈 ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ,  ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉  ∈  V | 
						
							| 67 | 57 59 65 66 | ovmpo | ⊢ ( ( ( 𝐺 ‘ 𝑣 )  ∈  V  ∧  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) )  ∈  V )  →  ( ( 𝐺 ‘ 𝑣 ) ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) )  =  〈 ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ,  ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) | 
						
							| 68 | 53 54 67 | mp2an | ⊢ ( ( 𝐺 ‘ 𝑣 ) ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) )  =  〈 ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ,  ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 | 
						
							| 69 | 52 68 | eqtr3i | ⊢ ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 )  =  〈 ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ,  ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 | 
						
							| 70 | 51 69 | eqtrdi | ⊢ ( ( 𝑅 ‘ 𝑣 )  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉  →  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) )  =  〈 ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ,  ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) | 
						
							| 71 | 70 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  ( 𝑅 ‘ 𝑣 )  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) )  →  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) )  =  〈 ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ,  ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) | 
						
							| 72 | 50 71 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  ( 𝑅 ‘ 𝑣 )  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) )  →  ( 𝑅 ‘ suc  𝑣 )  =  〈 ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ,  ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) | 
						
							| 73 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ω )  →  𝐶  ∈   No  ) | 
						
							| 74 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ω )  →  𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 75 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ω )  →  𝑣  ∈  ω ) | 
						
							| 76 | 73 74 75 | om2noseqsuc | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ω )  →  ( 𝐺 ‘ suc  𝑣 )  =  ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ) | 
						
							| 77 | 76 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  ( 𝑅 ‘ 𝑣 )  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) )  →  ( 𝐺 ‘ suc  𝑣 )  =  ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ) | 
						
							| 78 | 72 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  ( 𝑅 ‘ 𝑣 )  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) )  →  ( 2nd  ‘ ( 𝑅 ‘ suc  𝑣 ) )  =  ( 2nd  ‘ 〈 ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ,  ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) ) | 
						
							| 79 |  | ovex | ⊢ ( ( 𝐺 ‘ 𝑣 )  +s   1s  )  ∈  V | 
						
							| 80 |  | ovex | ⊢ ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) )  ∈  V | 
						
							| 81 | 79 80 | op2nd | ⊢ ( 2nd  ‘ 〈 ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ,  ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 )  =  ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) ) | 
						
							| 82 | 78 81 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  ( 𝑅 ‘ 𝑣 )  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) )  →  ( 2nd  ‘ ( 𝑅 ‘ suc  𝑣 ) )  =  ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) ) ) | 
						
							| 83 | 77 82 | opeq12d | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  ( 𝑅 ‘ 𝑣 )  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) )  →  〈 ( 𝐺 ‘ suc  𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ suc  𝑣 ) ) 〉  =  〈 ( ( 𝐺 ‘ 𝑣 )  +s   1s  ) ,  ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) | 
						
							| 84 | 72 83 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  ( 𝑅 ‘ 𝑣 )  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) )  →  ( 𝑅 ‘ suc  𝑣 )  =  〈 ( 𝐺 ‘ suc  𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ suc  𝑣 ) ) 〉 ) | 
						
							| 85 | 84 | exp32 | ⊢ ( 𝜑  →  ( 𝑣  ∈  ω  →  ( ( 𝑅 ‘ 𝑣 )  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉  →  ( 𝑅 ‘ suc  𝑣 )  =  〈 ( 𝐺 ‘ suc  𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ suc  𝑣 ) ) 〉 ) ) ) | 
						
							| 86 | 85 | com12 | ⊢ ( 𝑣  ∈  ω  →  ( 𝜑  →  ( ( 𝑅 ‘ 𝑣 )  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉  →  ( 𝑅 ‘ suc  𝑣 )  =  〈 ( 𝐺 ‘ suc  𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ suc  𝑣 ) ) 〉 ) ) ) | 
						
							| 87 | 86 | a2d | ⊢ ( 𝑣  ∈  ω  →  ( ( 𝜑  →  ( 𝑅 ‘ 𝑣 )  =  〈 ( 𝐺 ‘ 𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 )  →  ( 𝜑  →  ( 𝑅 ‘ suc  𝑣 )  =  〈 ( 𝐺 ‘ suc  𝑣 ) ,  ( 2nd  ‘ ( 𝑅 ‘ suc  𝑣 ) ) 〉 ) ) ) | 
						
							| 88 | 11 17 23 29 41 87 | finds | ⊢ ( 𝐵  ∈  ω  →  ( 𝜑  →  ( 𝑅 ‘ 𝐵 )  =  〈 ( 𝐺 ‘ 𝐵 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) ) | 
						
							| 89 | 88 | impcom | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ω )  →  ( 𝑅 ‘ 𝐵 )  =  〈 ( 𝐺 ‘ 𝐵 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) |