Metamath Proof Explorer


Theorem om2noseqrdg

Description: A helper lemma for the value of a recursive definition generator on a surreal sequence with characteristic function F ( x , y ) and initial value A . (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 ( 𝜑𝐶 No )
om2noseq.2 ( 𝜑𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) )
om2noseq.3 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) )
noseqrdg.1 ( 𝜑𝐴𝑉 )
noseqrdg.2 ( 𝜑𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) )
Assertion om2noseqrdg ( ( 𝜑𝐵 ∈ ω ) → ( 𝑅𝐵 ) = ⟨ ( 𝐺𝐵 ) , ( 2nd ‘ ( 𝑅𝐵 ) ) ⟩ )

Proof

Step Hyp Ref Expression
1 om2noseq.1 ( 𝜑𝐶 No )
2 om2noseq.2 ( 𝜑𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) )
3 om2noseq.3 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) )
4 noseqrdg.1 ( 𝜑𝐴𝑉 )
5 noseqrdg.2 ( 𝜑𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) )
6 fveq2 ( 𝑧 = ∅ → ( 𝑅𝑧 ) = ( 𝑅 ‘ ∅ ) )
7 fveq2 ( 𝑧 = ∅ → ( 𝐺𝑧 ) = ( 𝐺 ‘ ∅ ) )
8 2fveq3 ( 𝑧 = ∅ → ( 2nd ‘ ( 𝑅𝑧 ) ) = ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) )
9 7 8 opeq12d ( 𝑧 = ∅ → ⟨ ( 𝐺𝑧 ) , ( 2nd ‘ ( 𝑅𝑧 ) ) ⟩ = ⟨ ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) ⟩ )
10 6 9 eqeq12d ( 𝑧 = ∅ → ( ( 𝑅𝑧 ) = ⟨ ( 𝐺𝑧 ) , ( 2nd ‘ ( 𝑅𝑧 ) ) ⟩ ↔ ( 𝑅 ‘ ∅ ) = ⟨ ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) ⟩ ) )
11 10 imbi2d ( 𝑧 = ∅ → ( ( 𝜑 → ( 𝑅𝑧 ) = ⟨ ( 𝐺𝑧 ) , ( 2nd ‘ ( 𝑅𝑧 ) ) ⟩ ) ↔ ( 𝜑 → ( 𝑅 ‘ ∅ ) = ⟨ ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) ⟩ ) ) )
12 fveq2 ( 𝑧 = 𝑣 → ( 𝑅𝑧 ) = ( 𝑅𝑣 ) )
13 fveq2 ( 𝑧 = 𝑣 → ( 𝐺𝑧 ) = ( 𝐺𝑣 ) )
14 2fveq3 ( 𝑧 = 𝑣 → ( 2nd ‘ ( 𝑅𝑧 ) ) = ( 2nd ‘ ( 𝑅𝑣 ) ) )
15 13 14 opeq12d ( 𝑧 = 𝑣 → ⟨ ( 𝐺𝑧 ) , ( 2nd ‘ ( 𝑅𝑧 ) ) ⟩ = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ )
16 12 15 eqeq12d ( 𝑧 = 𝑣 → ( ( 𝑅𝑧 ) = ⟨ ( 𝐺𝑧 ) , ( 2nd ‘ ( 𝑅𝑧 ) ) ⟩ ↔ ( 𝑅𝑣 ) = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ ) )
17 16 imbi2d ( 𝑧 = 𝑣 → ( ( 𝜑 → ( 𝑅𝑧 ) = ⟨ ( 𝐺𝑧 ) , ( 2nd ‘ ( 𝑅𝑧 ) ) ⟩ ) ↔ ( 𝜑 → ( 𝑅𝑣 ) = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ ) ) )
18 fveq2 ( 𝑧 = suc 𝑣 → ( 𝑅𝑧 ) = ( 𝑅 ‘ suc 𝑣 ) )
19 fveq2 ( 𝑧 = suc 𝑣 → ( 𝐺𝑧 ) = ( 𝐺 ‘ suc 𝑣 ) )
20 2fveq3 ( 𝑧 = suc 𝑣 → ( 2nd ‘ ( 𝑅𝑧 ) ) = ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) )
21 19 20 opeq12d ( 𝑧 = suc 𝑣 → ⟨ ( 𝐺𝑧 ) , ( 2nd ‘ ( 𝑅𝑧 ) ) ⟩ = ⟨ ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) ⟩ )
22 18 21 eqeq12d ( 𝑧 = suc 𝑣 → ( ( 𝑅𝑧 ) = ⟨ ( 𝐺𝑧 ) , ( 2nd ‘ ( 𝑅𝑧 ) ) ⟩ ↔ ( 𝑅 ‘ suc 𝑣 ) = ⟨ ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) ⟩ ) )
23 22 imbi2d ( 𝑧 = suc 𝑣 → ( ( 𝜑 → ( 𝑅𝑧 ) = ⟨ ( 𝐺𝑧 ) , ( 2nd ‘ ( 𝑅𝑧 ) ) ⟩ ) ↔ ( 𝜑 → ( 𝑅 ‘ suc 𝑣 ) = ⟨ ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) ⟩ ) ) )
24 fveq2 ( 𝑧 = 𝐵 → ( 𝑅𝑧 ) = ( 𝑅𝐵 ) )
25 fveq2 ( 𝑧 = 𝐵 → ( 𝐺𝑧 ) = ( 𝐺𝐵 ) )
26 2fveq3 ( 𝑧 = 𝐵 → ( 2nd ‘ ( 𝑅𝑧 ) ) = ( 2nd ‘ ( 𝑅𝐵 ) ) )
27 25 26 opeq12d ( 𝑧 = 𝐵 → ⟨ ( 𝐺𝑧 ) , ( 2nd ‘ ( 𝑅𝑧 ) ) ⟩ = ⟨ ( 𝐺𝐵 ) , ( 2nd ‘ ( 𝑅𝐵 ) ) ⟩ )
28 24 27 eqeq12d ( 𝑧 = 𝐵 → ( ( 𝑅𝑧 ) = ⟨ ( 𝐺𝑧 ) , ( 2nd ‘ ( 𝑅𝑧 ) ) ⟩ ↔ ( 𝑅𝐵 ) = ⟨ ( 𝐺𝐵 ) , ( 2nd ‘ ( 𝑅𝐵 ) ) ⟩ ) )
29 28 imbi2d ( 𝑧 = 𝐵 → ( ( 𝜑 → ( 𝑅𝑧 ) = ⟨ ( 𝐺𝑧 ) , ( 2nd ‘ ( 𝑅𝑧 ) ) ⟩ ) ↔ ( 𝜑 → ( 𝑅𝐵 ) = ⟨ ( 𝐺𝐵 ) , ( 2nd ‘ ( 𝑅𝐵 ) ) ⟩ ) ) )
30 5 fveq1d ( 𝜑 → ( 𝑅 ‘ ∅ ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ ∅ ) )
31 opex 𝐶 , 𝐴 ⟩ ∈ V
32 fr0g ( ⟨ 𝐶 , 𝐴 ⟩ ∈ V → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ ∅ ) = ⟨ 𝐶 , 𝐴 ⟩ )
33 31 32 ax-mp ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ ∅ ) = ⟨ 𝐶 , 𝐴
34 30 33 eqtrdi ( 𝜑 → ( 𝑅 ‘ ∅ ) = ⟨ 𝐶 , 𝐴 ⟩ )
35 1 2 om2noseq0 ( 𝜑 → ( 𝐺 ‘ ∅ ) = 𝐶 )
36 34 fveq2d ( 𝜑 → ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) = ( 2nd ‘ ⟨ 𝐶 , 𝐴 ⟩ ) )
37 op2ndg ( ( 𝐶 No 𝐴𝑉 ) → ( 2nd ‘ ⟨ 𝐶 , 𝐴 ⟩ ) = 𝐴 )
38 1 4 37 syl2anc ( 𝜑 → ( 2nd ‘ ⟨ 𝐶 , 𝐴 ⟩ ) = 𝐴 )
39 36 38 eqtrd ( 𝜑 → ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) = 𝐴 )
40 35 39 opeq12d ( 𝜑 → ⟨ ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) ⟩ = ⟨ 𝐶 , 𝐴 ⟩ )
41 34 40 eqtr4d ( 𝜑 → ( 𝑅 ‘ ∅ ) = ⟨ ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) ⟩ )
42 frsuc ( 𝑣 ∈ ω → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ suc 𝑣 ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ 𝑣 ) ) )
43 42 adantl ( ( 𝜑𝑣 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ suc 𝑣 ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ 𝑣 ) ) )
44 5 fveq1d ( 𝜑 → ( 𝑅 ‘ suc 𝑣 ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ suc 𝑣 ) )
45 44 adantr ( ( 𝜑𝑣 ∈ ω ) → ( 𝑅 ‘ suc 𝑣 ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ suc 𝑣 ) )
46 5 fveq1d ( 𝜑 → ( 𝑅𝑣 ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ 𝑣 ) )
47 46 fveq2d ( 𝜑 → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ‘ ( 𝑅𝑣 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ 𝑣 ) ) )
48 47 adantr ( ( 𝜑𝑣 ∈ ω ) → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ‘ ( 𝑅𝑣 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ 𝑣 ) ) )
49 43 45 48 3eqtr4d ( ( 𝜑𝑣 ∈ ω ) → ( 𝑅 ‘ suc 𝑣 ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ‘ ( 𝑅𝑣 ) ) )
50 49 adantrr ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅𝑣 ) = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ ) ) → ( 𝑅 ‘ suc 𝑣 ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ‘ ( 𝑅𝑣 ) ) )
51 fveq2 ( ( 𝑅𝑣 ) = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ‘ ( 𝑅𝑣 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ‘ ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ ) )
52 df-ov ( ( 𝐺𝑣 ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ( 2nd ‘ ( 𝑅𝑣 ) ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ‘ ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ )
53 fvex ( 𝐺𝑣 ) ∈ V
54 fvex ( 2nd ‘ ( 𝑅𝑣 ) ) ∈ V
55 oveq1 ( 𝑤 = ( 𝐺𝑣 ) → ( 𝑤 +s 1s ) = ( ( 𝐺𝑣 ) +s 1s ) )
56 oveq1 ( 𝑤 = ( 𝐺𝑣 ) → ( 𝑤 𝐹 𝑧 ) = ( ( 𝐺𝑣 ) 𝐹 𝑧 ) )
57 55 56 opeq12d ( 𝑤 = ( 𝐺𝑣 ) → ⟨ ( 𝑤 +s 1s ) , ( 𝑤 𝐹 𝑧 ) ⟩ = ⟨ ( ( 𝐺𝑣 ) +s 1s ) , ( ( 𝐺𝑣 ) 𝐹 𝑧 ) ⟩ )
58 oveq2 ( 𝑧 = ( 2nd ‘ ( 𝑅𝑣 ) ) → ( ( 𝐺𝑣 ) 𝐹 𝑧 ) = ( ( 𝐺𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅𝑣 ) ) ) )
59 58 opeq2d ( 𝑧 = ( 2nd ‘ ( 𝑅𝑣 ) ) → ⟨ ( ( 𝐺𝑣 ) +s 1s ) , ( ( 𝐺𝑣 ) 𝐹 𝑧 ) ⟩ = ⟨ ( ( 𝐺𝑣 ) +s 1s ) , ( ( 𝐺𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅𝑣 ) ) ) ⟩ )
60 oveq1 ( 𝑥 = 𝑤 → ( 𝑥 +s 1s ) = ( 𝑤 +s 1s ) )
61 oveq1 ( 𝑥 = 𝑤 → ( 𝑥 𝐹 𝑦 ) = ( 𝑤 𝐹 𝑦 ) )
62 60 61 opeq12d ( 𝑥 = 𝑤 → ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ = ⟨ ( 𝑤 +s 1s ) , ( 𝑤 𝐹 𝑦 ) ⟩ )
63 oveq2 ( 𝑦 = 𝑧 → ( 𝑤 𝐹 𝑦 ) = ( 𝑤 𝐹 𝑧 ) )
64 63 opeq2d ( 𝑦 = 𝑧 → ⟨ ( 𝑤 +s 1s ) , ( 𝑤 𝐹 𝑦 ) ⟩ = ⟨ ( 𝑤 +s 1s ) , ( 𝑤 𝐹 𝑧 ) ⟩ )
65 62 64 cbvmpov ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) = ( 𝑤 ∈ V , 𝑧 ∈ V ↦ ⟨ ( 𝑤 +s 1s ) , ( 𝑤 𝐹 𝑧 ) ⟩ )
66 opex ⟨ ( ( 𝐺𝑣 ) +s 1s ) , ( ( 𝐺𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅𝑣 ) ) ) ⟩ ∈ V
67 57 59 65 66 ovmpo ( ( ( 𝐺𝑣 ) ∈ V ∧ ( 2nd ‘ ( 𝑅𝑣 ) ) ∈ V ) → ( ( 𝐺𝑣 ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ( 2nd ‘ ( 𝑅𝑣 ) ) ) = ⟨ ( ( 𝐺𝑣 ) +s 1s ) , ( ( 𝐺𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅𝑣 ) ) ) ⟩ )
68 53 54 67 mp2an ( ( 𝐺𝑣 ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ( 2nd ‘ ( 𝑅𝑣 ) ) ) = ⟨ ( ( 𝐺𝑣 ) +s 1s ) , ( ( 𝐺𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅𝑣 ) ) ) ⟩
69 52 68 eqtr3i ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ‘ ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ ) = ⟨ ( ( 𝐺𝑣 ) +s 1s ) , ( ( 𝐺𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅𝑣 ) ) ) ⟩
70 51 69 eqtrdi ( ( 𝑅𝑣 ) = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ‘ ( 𝑅𝑣 ) ) = ⟨ ( ( 𝐺𝑣 ) +s 1s ) , ( ( 𝐺𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅𝑣 ) ) ) ⟩ )
71 70 ad2antll ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅𝑣 ) = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ ) ) → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) ‘ ( 𝑅𝑣 ) ) = ⟨ ( ( 𝐺𝑣 ) +s 1s ) , ( ( 𝐺𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅𝑣 ) ) ) ⟩ )
72 50 71 eqtrd ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅𝑣 ) = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ ) ) → ( 𝑅 ‘ suc 𝑣 ) = ⟨ ( ( 𝐺𝑣 ) +s 1s ) , ( ( 𝐺𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅𝑣 ) ) ) ⟩ )
73 1 adantr ( ( 𝜑𝑣 ∈ ω ) → 𝐶 No )
74 2 adantr ( ( 𝜑𝑣 ∈ ω ) → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) )
75 simpr ( ( 𝜑𝑣 ∈ ω ) → 𝑣 ∈ ω )
76 73 74 75 om2noseqsuc ( ( 𝜑𝑣 ∈ ω ) → ( 𝐺 ‘ suc 𝑣 ) = ( ( 𝐺𝑣 ) +s 1s ) )
77 76 adantrr ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅𝑣 ) = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ ) ) → ( 𝐺 ‘ suc 𝑣 ) = ( ( 𝐺𝑣 ) +s 1s ) )
78 72 fveq2d ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅𝑣 ) = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ ) ) → ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) = ( 2nd ‘ ⟨ ( ( 𝐺𝑣 ) +s 1s ) , ( ( 𝐺𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅𝑣 ) ) ) ⟩ ) )
79 ovex ( ( 𝐺𝑣 ) +s 1s ) ∈ V
80 ovex ( ( 𝐺𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅𝑣 ) ) ) ∈ V
81 79 80 op2nd ( 2nd ‘ ⟨ ( ( 𝐺𝑣 ) +s 1s ) , ( ( 𝐺𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅𝑣 ) ) ) ⟩ ) = ( ( 𝐺𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅𝑣 ) ) )
82 78 81 eqtrdi ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅𝑣 ) = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ ) ) → ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) = ( ( 𝐺𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅𝑣 ) ) ) )
83 77 82 opeq12d ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅𝑣 ) = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ ) ) → ⟨ ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) ⟩ = ⟨ ( ( 𝐺𝑣 ) +s 1s ) , ( ( 𝐺𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅𝑣 ) ) ) ⟩ )
84 72 83 eqtr4d ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ ( 𝑅𝑣 ) = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ ) ) → ( 𝑅 ‘ suc 𝑣 ) = ⟨ ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) ⟩ )
85 84 exp32 ( 𝜑 → ( 𝑣 ∈ ω → ( ( 𝑅𝑣 ) = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ → ( 𝑅 ‘ suc 𝑣 ) = ⟨ ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) ⟩ ) ) )
86 85 com12 ( 𝑣 ∈ ω → ( 𝜑 → ( ( 𝑅𝑣 ) = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ → ( 𝑅 ‘ suc 𝑣 ) = ⟨ ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) ⟩ ) ) )
87 86 a2d ( 𝑣 ∈ ω → ( ( 𝜑 → ( 𝑅𝑣 ) = ⟨ ( 𝐺𝑣 ) , ( 2nd ‘ ( 𝑅𝑣 ) ) ⟩ ) → ( 𝜑 → ( 𝑅 ‘ suc 𝑣 ) = ⟨ ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) ⟩ ) ) )
88 11 17 23 29 41 87 finds ( 𝐵 ∈ ω → ( 𝜑 → ( 𝑅𝐵 ) = ⟨ ( 𝐺𝐵 ) , ( 2nd ‘ ( 𝑅𝐵 ) ) ⟩ ) )
89 88 impcom ( ( 𝜑𝐵 ∈ ω ) → ( 𝑅𝐵 ) = ⟨ ( 𝐺𝐵 ) , ( 2nd ‘ ( 𝑅𝐵 ) ) ⟩ )