Metamath Proof Explorer


Theorem noseqrdglem

Description: A helper lemma for the value of a recursive defintion generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 ( 𝜑𝐶 No )
om2noseq.2 ( 𝜑𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) )
om2noseq.3 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) )
noseqrdg.1 ( 𝜑𝐴𝑉 )
noseqrdg.2 ( 𝜑𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) )
Assertion noseqrdglem ( ( 𝜑𝐵𝑍 ) → ⟨ 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( 𝐺𝐵 ) ) ) ⟩ ∈ ran 𝑅 )

Proof

Step Hyp Ref Expression
1 om2noseq.1 ( 𝜑𝐶 No )
2 om2noseq.2 ( 𝜑𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) )
3 om2noseq.3 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) )
4 noseqrdg.1 ( 𝜑𝐴𝑉 )
5 noseqrdg.2 ( 𝜑𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) )
6 1 2 3 om2noseqf1o ( 𝜑𝐺 : ω –1-1-onto𝑍 )
7 f1ocnvdm ( ( 𝐺 : ω –1-1-onto𝑍𝐵𝑍 ) → ( 𝐺𝐵 ) ∈ ω )
8 6 7 sylan ( ( 𝜑𝐵𝑍 ) → ( 𝐺𝐵 ) ∈ ω )
9 1 2 3 4 5 om2noseqrdg ( ( 𝜑 ∧ ( 𝐺𝐵 ) ∈ ω ) → ( 𝑅 ‘ ( 𝐺𝐵 ) ) = ⟨ ( 𝐺 ‘ ( 𝐺𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( 𝐺𝐵 ) ) ) ⟩ )
10 8 9 syldan ( ( 𝜑𝐵𝑍 ) → ( 𝑅 ‘ ( 𝐺𝐵 ) ) = ⟨ ( 𝐺 ‘ ( 𝐺𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( 𝐺𝐵 ) ) ) ⟩ )
11 f1ocnvfv2 ( ( 𝐺 : ω –1-1-onto𝑍𝐵𝑍 ) → ( 𝐺 ‘ ( 𝐺𝐵 ) ) = 𝐵 )
12 6 11 sylan ( ( 𝜑𝐵𝑍 ) → ( 𝐺 ‘ ( 𝐺𝐵 ) ) = 𝐵 )
13 12 opeq1d ( ( 𝜑𝐵𝑍 ) → ⟨ ( 𝐺 ‘ ( 𝐺𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( 𝐺𝐵 ) ) ) ⟩ = ⟨ 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( 𝐺𝐵 ) ) ) ⟩ )
14 10 13 eqtrd ( ( 𝜑𝐵𝑍 ) → ( 𝑅 ‘ ( 𝐺𝐵 ) ) = ⟨ 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( 𝐺𝐵 ) ) ) ⟩ )
15 frfnom ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) Fn ω
16 5 fneq1d ( 𝜑 → ( 𝑅 Fn ω ↔ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) Fn ω ) )
17 15 16 mpbiri ( 𝜑𝑅 Fn ω )
18 17 adantr ( ( 𝜑𝐵𝑍 ) → 𝑅 Fn ω )
19 18 8 fnfvelrnd ( ( 𝜑𝐵𝑍 ) → ( 𝑅 ‘ ( 𝐺𝐵 ) ) ∈ ran 𝑅 )
20 14 19 eqeltrrd ( ( 𝜑𝐵𝑍 ) → ⟨ 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( 𝐺𝐵 ) ) ) ⟩ ∈ ran 𝑅 )