Step |
Hyp |
Ref |
Expression |
1 |
|
om2noseq.1 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
2 |
|
om2noseq.2 |
⊢ ( 𝜑 → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
3 |
|
om2noseq.3 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) ) |
4 |
|
noseqrdg.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
noseqrdg.2 |
⊢ ( 𝜑 → 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ) |
6 |
1 2 3
|
om2noseqf1o |
⊢ ( 𝜑 → 𝐺 : ω –1-1-onto→ 𝑍 ) |
7 |
|
f1ocnvdm |
⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍 ∧ 𝐵 ∈ 𝑍 ) → ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) |
8 |
6 7
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) |
9 |
1 2 3 4 5
|
om2noseqrdg |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) |
10 |
8 9
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) |
11 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍 ∧ 𝐵 ∈ 𝑍 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 𝐵 ) |
12 |
6 11
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 𝐵 ) |
13 |
12
|
opeq1d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 = 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) |
14 |
10 13
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) |
15 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω |
16 |
5
|
fneq1d |
⊢ ( 𝜑 → ( 𝑅 Fn ω ↔ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω ) ) |
17 |
15 16
|
mpbiri |
⊢ ( 𝜑 → 𝑅 Fn ω ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 𝑅 Fn ω ) |
19 |
18 8
|
fnfvelrnd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ∈ ran 𝑅 ) |
20 |
14 19
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ∈ ran 𝑅 ) |