| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 2 |  | om2noseq.2 | ⊢ ( 𝜑  →  𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 3 |  | om2noseq.3 | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  “  ω ) ) | 
						
							| 4 |  | noseqrdg.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | noseqrdg.2 | ⊢ ( 𝜑  →  𝑅  =  ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ) | 
						
							| 6 | 1 2 3 | om2noseqf1o | ⊢ ( 𝜑  →  𝐺 : ω –1-1-onto→ 𝑍 ) | 
						
							| 7 |  | f1ocnvdm | ⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍  ∧  𝐵  ∈  𝑍 )  →  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω ) | 
						
							| 8 | 6 7 | sylan | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω ) | 
						
							| 9 | 1 2 3 4 5 | om2noseqrdg | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω )  →  ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  =  〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) | 
						
							| 10 | 8 9 | syldan | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  =  〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) | 
						
							| 11 |  | f1ocnvfv2 | ⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍  ∧  𝐵  ∈  𝑍 )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 12 | 6 11 | sylan | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 13 | 12 | opeq1d | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉  =  〈 𝐵 ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) | 
						
							| 14 | 10 13 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  =  〈 𝐵 ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) | 
						
							| 15 |  | frfnom | ⊢ ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω )  Fn  ω | 
						
							| 16 | 5 | fneq1d | ⊢ ( 𝜑  →  ( 𝑅  Fn  ω  ↔  ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω )  Fn  ω ) ) | 
						
							| 17 | 15 16 | mpbiri | ⊢ ( 𝜑  →  𝑅  Fn  ω ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  𝑅  Fn  ω ) | 
						
							| 19 | 18 8 | fnfvelrnd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  ∈  ran  𝑅 ) | 
						
							| 20 | 14 19 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  〈 𝐵 ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉  ∈  ran  𝑅 ) |