Step |
Hyp |
Ref |
Expression |
1 |
|
om2noseq.1 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
2 |
|
om2noseq.2 |
⊢ ( 𝜑 → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
3 |
|
om2noseq.3 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) ) |
4 |
|
noseqrdg.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
noseqrdg.2 |
⊢ ( 𝜑 → 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ) |
6 |
|
noseqrdg.3 |
⊢ ( 𝜑 → 𝑆 = ran 𝑅 ) |
7 |
6
|
eleq2d |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑆 ↔ 𝑧 ∈ ran 𝑅 ) ) |
8 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω |
9 |
5
|
fneq1d |
⊢ ( 𝜑 → ( 𝑅 Fn ω ↔ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω ) ) |
10 |
8 9
|
mpbiri |
⊢ ( 𝜑 → 𝑅 Fn ω ) |
11 |
|
fvelrnb |
⊢ ( 𝑅 Fn ω → ( 𝑧 ∈ ran 𝑅 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 𝑧 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( 𝑧 ∈ ran 𝑅 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 𝑧 ) ) |
13 |
7 12
|
bitrd |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑆 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 𝑧 ) ) |
14 |
1 2 3 4 5
|
om2noseqrdg |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ω ) → ( 𝑅 ‘ 𝑤 ) = 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 ) |
15 |
1 2 3
|
om2noseqfo |
⊢ ( 𝜑 → 𝐺 : ω –onto→ 𝑍 ) |
16 |
|
fof |
⊢ ( 𝐺 : ω –onto→ 𝑍 → 𝐺 : ω ⟶ 𝑍 ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝐺 : ω ⟶ 𝑍 ) |
18 |
17
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ω ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑍 ) |
19 |
|
fvex |
⊢ ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) ∈ V |
20 |
|
opelxpi |
⊢ ( ( ( 𝐺 ‘ 𝑤 ) ∈ 𝑍 ∧ ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) ∈ V ) → 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 ∈ ( 𝑍 × V ) ) |
21 |
18 19 20
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ω ) → 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 ∈ ( 𝑍 × V ) ) |
22 |
14 21
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ω ) → ( 𝑅 ‘ 𝑤 ) ∈ ( 𝑍 × V ) ) |
23 |
|
eleq1 |
⊢ ( ( 𝑅 ‘ 𝑤 ) = 𝑧 → ( ( 𝑅 ‘ 𝑤 ) ∈ ( 𝑍 × V ) ↔ 𝑧 ∈ ( 𝑍 × V ) ) ) |
24 |
22 23
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ω ) → ( ( 𝑅 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ ( 𝑍 × V ) ) ) |
25 |
24
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ ( 𝑍 × V ) ) ) |
26 |
13 25
|
sylbid |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑆 → 𝑧 ∈ ( 𝑍 × V ) ) ) |
27 |
26
|
ssrdv |
⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑍 × V ) ) |
28 |
|
relxp |
⊢ Rel ( 𝑍 × V ) |
29 |
|
relss |
⊢ ( 𝑆 ⊆ ( 𝑍 × V ) → ( Rel ( 𝑍 × V ) → Rel 𝑆 ) ) |
30 |
27 28 29
|
mpisyl |
⊢ ( 𝜑 → Rel 𝑆 ) |
31 |
6
|
eleq2d |
⊢ ( 𝜑 → ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 ↔ 〈 𝑣 , 𝑧 〉 ∈ ran 𝑅 ) ) |
32 |
|
fvelrnb |
⊢ ( 𝑅 Fn ω → ( 〈 𝑣 , 𝑧 〉 ∈ ran 𝑅 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) ) |
33 |
10 32
|
syl |
⊢ ( 𝜑 → ( 〈 𝑣 , 𝑧 〉 ∈ ran 𝑅 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) ) |
34 |
31 33
|
bitrd |
⊢ ( 𝜑 → ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) ) |
35 |
14
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ω ) → ( ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ↔ 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 = 〈 𝑣 , 𝑧 〉 ) ) |
36 |
35
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ω ) → ( ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 → 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 = 〈 𝑣 , 𝑧 〉 ) ) |
37 |
36
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ω ∧ ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) ) → 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 = 〈 𝑣 , 𝑧 〉 ) |
38 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑤 ) ∈ V |
39 |
38 19
|
opth1 |
⊢ ( 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 = 〈 𝑣 , 𝑧 〉 → ( 𝐺 ‘ 𝑤 ) = 𝑣 ) |
40 |
37 39
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ω ∧ ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) ) → ( 𝐺 ‘ 𝑤 ) = 𝑣 ) |
41 |
1 2 3
|
om2noseqf1o |
⊢ ( 𝜑 → 𝐺 : ω –1-1-onto→ 𝑍 ) |
42 |
|
f1ocnvfv |
⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍 ∧ 𝑤 ∈ ω ) → ( ( 𝐺 ‘ 𝑤 ) = 𝑣 → ( ◡ 𝐺 ‘ 𝑣 ) = 𝑤 ) ) |
43 |
41 42
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ω ) → ( ( 𝐺 ‘ 𝑤 ) = 𝑣 → ( ◡ 𝐺 ‘ 𝑣 ) = 𝑤 ) ) |
44 |
43
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ω ∧ ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) ) → ( ( 𝐺 ‘ 𝑤 ) = 𝑣 → ( ◡ 𝐺 ‘ 𝑣 ) = 𝑤 ) ) |
45 |
40 44
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ω ∧ ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) ) → ( ◡ 𝐺 ‘ 𝑣 ) = 𝑤 ) |
46 |
45
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ω ∧ ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) ) → ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) = ( 𝑅 ‘ 𝑤 ) ) |
47 |
46
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ω ∧ ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) ) → ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) = ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
48 |
|
vex |
⊢ 𝑣 ∈ V |
49 |
|
vex |
⊢ 𝑧 ∈ V |
50 |
48 49
|
op2ndd |
⊢ ( ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 → ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) = 𝑧 ) |
51 |
50
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ω ∧ ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) ) → ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) = 𝑧 ) |
52 |
47 51
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ω ∧ ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) ) → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) |
53 |
52
|
rexlimdvaa |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) |
54 |
34 53
|
sylbid |
⊢ ( 𝜑 → ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) |
55 |
54
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) |
56 |
|
fvex |
⊢ ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ∈ V |
57 |
|
eqeq2 |
⊢ ( 𝑤 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) → ( 𝑧 = 𝑤 ↔ 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) |
58 |
57
|
imbi2d |
⊢ ( 𝑤 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) → ( ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) ↔ ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) ) |
59 |
58
|
albidv |
⊢ ( 𝑤 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) → ( ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) ↔ ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) ) |
60 |
56 59
|
spcev |
⊢ ( ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) → ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) ) |
61 |
55 60
|
syl |
⊢ ( 𝜑 → ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) ) |
62 |
61
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑣 ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) ) |
63 |
|
dffun5 |
⊢ ( Fun 𝑆 ↔ ( Rel 𝑆 ∧ ∀ 𝑣 ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) ) ) |
64 |
30 62 63
|
sylanbrc |
⊢ ( 𝜑 → Fun 𝑆 ) |
65 |
|
dmss |
⊢ ( 𝑆 ⊆ ( 𝑍 × V ) → dom 𝑆 ⊆ dom ( 𝑍 × V ) ) |
66 |
27 65
|
syl |
⊢ ( 𝜑 → dom 𝑆 ⊆ dom ( 𝑍 × V ) ) |
67 |
|
dmxpss |
⊢ dom ( 𝑍 × V ) ⊆ 𝑍 |
68 |
66 67
|
sstrdi |
⊢ ( 𝜑 → dom 𝑆 ⊆ 𝑍 ) |
69 |
1 2 3 4 5
|
noseqrdglem |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑍 ) → 〈 𝑣 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) 〉 ∈ ran 𝑅 ) |
70 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑍 ) → 𝑆 = ran 𝑅 ) |
71 |
69 70
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑍 ) → 〈 𝑣 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) 〉 ∈ 𝑆 ) |
72 |
48 56
|
opeldm |
⊢ ( 〈 𝑣 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) 〉 ∈ 𝑆 → 𝑣 ∈ dom 𝑆 ) |
73 |
71 72
|
syl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑍 ) → 𝑣 ∈ dom 𝑆 ) |
74 |
68 73
|
eqelssd |
⊢ ( 𝜑 → dom 𝑆 = 𝑍 ) |
75 |
|
df-fn |
⊢ ( 𝑆 Fn 𝑍 ↔ ( Fun 𝑆 ∧ dom 𝑆 = 𝑍 ) ) |
76 |
64 74 75
|
sylanbrc |
⊢ ( 𝜑 → 𝑆 Fn 𝑍 ) |