| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 2 |  | om2noseq.2 | ⊢ ( 𝜑  →  𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 3 |  | om2noseq.3 | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  “  ω ) ) | 
						
							| 4 |  | noseqrdg.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | noseqrdg.2 | ⊢ ( 𝜑  →  𝑅  =  ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ) | 
						
							| 6 |  | noseqrdg.3 | ⊢ ( 𝜑  →  𝑆  =  ran  𝑅 ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝑆  ↔  𝑧  ∈  ran  𝑅 ) ) | 
						
							| 8 |  | frfnom | ⊢ ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω )  Fn  ω | 
						
							| 9 | 5 | fneq1d | ⊢ ( 𝜑  →  ( 𝑅  Fn  ω  ↔  ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω )  Fn  ω ) ) | 
						
							| 10 | 8 9 | mpbiri | ⊢ ( 𝜑  →  𝑅  Fn  ω ) | 
						
							| 11 |  | fvelrnb | ⊢ ( 𝑅  Fn  ω  →  ( 𝑧  ∈  ran  𝑅  ↔  ∃ 𝑤  ∈  ω ( 𝑅 ‘ 𝑤 )  =  𝑧 ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  ( 𝑧  ∈  ran  𝑅  ↔  ∃ 𝑤  ∈  ω ( 𝑅 ‘ 𝑤 )  =  𝑧 ) ) | 
						
							| 13 | 7 12 | bitrd | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝑆  ↔  ∃ 𝑤  ∈  ω ( 𝑅 ‘ 𝑤 )  =  𝑧 ) ) | 
						
							| 14 | 1 2 3 4 5 | om2noseqrdg | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ω )  →  ( 𝑅 ‘ 𝑤 )  =  〈 ( 𝐺 ‘ 𝑤 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 ) | 
						
							| 15 | 1 2 3 | om2noseqfo | ⊢ ( 𝜑  →  𝐺 : ω –onto→ 𝑍 ) | 
						
							| 16 |  | fof | ⊢ ( 𝐺 : ω –onto→ 𝑍  →  𝐺 : ω ⟶ 𝑍 ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  𝐺 : ω ⟶ 𝑍 ) | 
						
							| 18 | 17 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ω )  →  ( 𝐺 ‘ 𝑤 )  ∈  𝑍 ) | 
						
							| 19 |  | fvex | ⊢ ( 2nd  ‘ ( 𝑅 ‘ 𝑤 ) )  ∈  V | 
						
							| 20 |  | opelxpi | ⊢ ( ( ( 𝐺 ‘ 𝑤 )  ∈  𝑍  ∧  ( 2nd  ‘ ( 𝑅 ‘ 𝑤 ) )  ∈  V )  →  〈 ( 𝐺 ‘ 𝑤 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑤 ) ) 〉  ∈  ( 𝑍  ×  V ) ) | 
						
							| 21 | 18 19 20 | sylancl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ω )  →  〈 ( 𝐺 ‘ 𝑤 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑤 ) ) 〉  ∈  ( 𝑍  ×  V ) ) | 
						
							| 22 | 14 21 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ω )  →  ( 𝑅 ‘ 𝑤 )  ∈  ( 𝑍  ×  V ) ) | 
						
							| 23 |  | eleq1 | ⊢ ( ( 𝑅 ‘ 𝑤 )  =  𝑧  →  ( ( 𝑅 ‘ 𝑤 )  ∈  ( 𝑍  ×  V )  ↔  𝑧  ∈  ( 𝑍  ×  V ) ) ) | 
						
							| 24 | 22 23 | syl5ibcom | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ω )  →  ( ( 𝑅 ‘ 𝑤 )  =  𝑧  →  𝑧  ∈  ( 𝑍  ×  V ) ) ) | 
						
							| 25 | 24 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑤  ∈  ω ( 𝑅 ‘ 𝑤 )  =  𝑧  →  𝑧  ∈  ( 𝑍  ×  V ) ) ) | 
						
							| 26 | 13 25 | sylbid | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝑆  →  𝑧  ∈  ( 𝑍  ×  V ) ) ) | 
						
							| 27 | 26 | ssrdv | ⊢ ( 𝜑  →  𝑆  ⊆  ( 𝑍  ×  V ) ) | 
						
							| 28 |  | relxp | ⊢ Rel  ( 𝑍  ×  V ) | 
						
							| 29 |  | relss | ⊢ ( 𝑆  ⊆  ( 𝑍  ×  V )  →  ( Rel  ( 𝑍  ×  V )  →  Rel  𝑆 ) ) | 
						
							| 30 | 27 28 29 | mpisyl | ⊢ ( 𝜑  →  Rel  𝑆 ) | 
						
							| 31 | 6 | eleq2d | ⊢ ( 𝜑  →  ( 〈 𝑣 ,  𝑧 〉  ∈  𝑆  ↔  〈 𝑣 ,  𝑧 〉  ∈  ran  𝑅 ) ) | 
						
							| 32 |  | fvelrnb | ⊢ ( 𝑅  Fn  ω  →  ( 〈 𝑣 ,  𝑧 〉  ∈  ran  𝑅  ↔  ∃ 𝑤  ∈  ω ( 𝑅 ‘ 𝑤 )  =  〈 𝑣 ,  𝑧 〉 ) ) | 
						
							| 33 | 10 32 | syl | ⊢ ( 𝜑  →  ( 〈 𝑣 ,  𝑧 〉  ∈  ran  𝑅  ↔  ∃ 𝑤  ∈  ω ( 𝑅 ‘ 𝑤 )  =  〈 𝑣 ,  𝑧 〉 ) ) | 
						
							| 34 | 31 33 | bitrd | ⊢ ( 𝜑  →  ( 〈 𝑣 ,  𝑧 〉  ∈  𝑆  ↔  ∃ 𝑤  ∈  ω ( 𝑅 ‘ 𝑤 )  =  〈 𝑣 ,  𝑧 〉 ) ) | 
						
							| 35 | 14 | eqeq1d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ω )  →  ( ( 𝑅 ‘ 𝑤 )  =  〈 𝑣 ,  𝑧 〉  ↔  〈 ( 𝐺 ‘ 𝑤 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑤 ) ) 〉  =  〈 𝑣 ,  𝑧 〉 ) ) | 
						
							| 36 | 35 | biimpd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ω )  →  ( ( 𝑅 ‘ 𝑤 )  =  〈 𝑣 ,  𝑧 〉  →  〈 ( 𝐺 ‘ 𝑤 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑤 ) ) 〉  =  〈 𝑣 ,  𝑧 〉 ) ) | 
						
							| 37 | 36 | impr | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ω  ∧  ( 𝑅 ‘ 𝑤 )  =  〈 𝑣 ,  𝑧 〉 ) )  →  〈 ( 𝐺 ‘ 𝑤 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑤 ) ) 〉  =  〈 𝑣 ,  𝑧 〉 ) | 
						
							| 38 |  | fvex | ⊢ ( 𝐺 ‘ 𝑤 )  ∈  V | 
						
							| 39 | 38 19 | opth1 | ⊢ ( 〈 ( 𝐺 ‘ 𝑤 ) ,  ( 2nd  ‘ ( 𝑅 ‘ 𝑤 ) ) 〉  =  〈 𝑣 ,  𝑧 〉  →  ( 𝐺 ‘ 𝑤 )  =  𝑣 ) | 
						
							| 40 | 37 39 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ω  ∧  ( 𝑅 ‘ 𝑤 )  =  〈 𝑣 ,  𝑧 〉 ) )  →  ( 𝐺 ‘ 𝑤 )  =  𝑣 ) | 
						
							| 41 | 1 2 3 | om2noseqf1o | ⊢ ( 𝜑  →  𝐺 : ω –1-1-onto→ 𝑍 ) | 
						
							| 42 |  | f1ocnvfv | ⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍  ∧  𝑤  ∈  ω )  →  ( ( 𝐺 ‘ 𝑤 )  =  𝑣  →  ( ◡ 𝐺 ‘ 𝑣 )  =  𝑤 ) ) | 
						
							| 43 | 41 42 | sylan | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ω )  →  ( ( 𝐺 ‘ 𝑤 )  =  𝑣  →  ( ◡ 𝐺 ‘ 𝑣 )  =  𝑤 ) ) | 
						
							| 44 | 43 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ω  ∧  ( 𝑅 ‘ 𝑤 )  =  〈 𝑣 ,  𝑧 〉 ) )  →  ( ( 𝐺 ‘ 𝑤 )  =  𝑣  →  ( ◡ 𝐺 ‘ 𝑣 )  =  𝑤 ) ) | 
						
							| 45 | 40 44 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ω  ∧  ( 𝑅 ‘ 𝑤 )  =  〈 𝑣 ,  𝑧 〉 ) )  →  ( ◡ 𝐺 ‘ 𝑣 )  =  𝑤 ) | 
						
							| 46 | 45 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ω  ∧  ( 𝑅 ‘ 𝑤 )  =  〈 𝑣 ,  𝑧 〉 ) )  →  ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) )  =  ( 𝑅 ‘ 𝑤 ) ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ω  ∧  ( 𝑅 ‘ 𝑤 )  =  〈 𝑣 ,  𝑧 〉 ) )  →  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) )  =  ( 2nd  ‘ ( 𝑅 ‘ 𝑤 ) ) ) | 
						
							| 48 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 49 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 50 | 48 49 | op2ndd | ⊢ ( ( 𝑅 ‘ 𝑤 )  =  〈 𝑣 ,  𝑧 〉  →  ( 2nd  ‘ ( 𝑅 ‘ 𝑤 ) )  =  𝑧 ) | 
						
							| 51 | 50 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ω  ∧  ( 𝑅 ‘ 𝑤 )  =  〈 𝑣 ,  𝑧 〉 ) )  →  ( 2nd  ‘ ( 𝑅 ‘ 𝑤 ) )  =  𝑧 ) | 
						
							| 52 | 47 51 | eqtr2d | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ω  ∧  ( 𝑅 ‘ 𝑤 )  =  〈 𝑣 ,  𝑧 〉 ) )  →  𝑧  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) | 
						
							| 53 | 52 | rexlimdvaa | ⊢ ( 𝜑  →  ( ∃ 𝑤  ∈  ω ( 𝑅 ‘ 𝑤 )  =  〈 𝑣 ,  𝑧 〉  →  𝑧  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) | 
						
							| 54 | 34 53 | sylbid | ⊢ ( 𝜑  →  ( 〈 𝑣 ,  𝑧 〉  ∈  𝑆  →  𝑧  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) | 
						
							| 55 | 54 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑧 ( 〈 𝑣 ,  𝑧 〉  ∈  𝑆  →  𝑧  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) | 
						
							| 56 |  | fvex | ⊢ ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) )  ∈  V | 
						
							| 57 |  | eqeq2 | ⊢ ( 𝑤  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) )  →  ( 𝑧  =  𝑤  ↔  𝑧  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) | 
						
							| 58 | 57 | imbi2d | ⊢ ( 𝑤  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) )  →  ( ( 〈 𝑣 ,  𝑧 〉  ∈  𝑆  →  𝑧  =  𝑤 )  ↔  ( 〈 𝑣 ,  𝑧 〉  ∈  𝑆  →  𝑧  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) ) | 
						
							| 59 | 58 | albidv | ⊢ ( 𝑤  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) )  →  ( ∀ 𝑧 ( 〈 𝑣 ,  𝑧 〉  ∈  𝑆  →  𝑧  =  𝑤 )  ↔  ∀ 𝑧 ( 〈 𝑣 ,  𝑧 〉  ∈  𝑆  →  𝑧  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) ) | 
						
							| 60 | 56 59 | spcev | ⊢ ( ∀ 𝑧 ( 〈 𝑣 ,  𝑧 〉  ∈  𝑆  →  𝑧  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) )  →  ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 ,  𝑧 〉  ∈  𝑆  →  𝑧  =  𝑤 ) ) | 
						
							| 61 | 55 60 | syl | ⊢ ( 𝜑  →  ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 ,  𝑧 〉  ∈  𝑆  →  𝑧  =  𝑤 ) ) | 
						
							| 62 | 61 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑣 ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 ,  𝑧 〉  ∈  𝑆  →  𝑧  =  𝑤 ) ) | 
						
							| 63 |  | dffun5 | ⊢ ( Fun  𝑆  ↔  ( Rel  𝑆  ∧  ∀ 𝑣 ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 ,  𝑧 〉  ∈  𝑆  →  𝑧  =  𝑤 ) ) ) | 
						
							| 64 | 30 62 63 | sylanbrc | ⊢ ( 𝜑  →  Fun  𝑆 ) | 
						
							| 65 |  | dmss | ⊢ ( 𝑆  ⊆  ( 𝑍  ×  V )  →  dom  𝑆  ⊆  dom  ( 𝑍  ×  V ) ) | 
						
							| 66 | 27 65 | syl | ⊢ ( 𝜑  →  dom  𝑆  ⊆  dom  ( 𝑍  ×  V ) ) | 
						
							| 67 |  | dmxpss | ⊢ dom  ( 𝑍  ×  V )  ⊆  𝑍 | 
						
							| 68 | 66 67 | sstrdi | ⊢ ( 𝜑  →  dom  𝑆  ⊆  𝑍 ) | 
						
							| 69 | 1 2 3 4 5 | noseqrdglem | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑍 )  →  〈 𝑣 ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) 〉  ∈  ran  𝑅 ) | 
						
							| 70 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑍 )  →  𝑆  =  ran  𝑅 ) | 
						
							| 71 | 69 70 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑍 )  →  〈 𝑣 ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) 〉  ∈  𝑆 ) | 
						
							| 72 | 48 56 | opeldm | ⊢ ( 〈 𝑣 ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) 〉  ∈  𝑆  →  𝑣  ∈  dom  𝑆 ) | 
						
							| 73 | 71 72 | syl | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑍 )  →  𝑣  ∈  dom  𝑆 ) | 
						
							| 74 | 68 73 | eqelssd | ⊢ ( 𝜑  →  dom  𝑆  =  𝑍 ) | 
						
							| 75 |  | df-fn | ⊢ ( 𝑆  Fn  𝑍  ↔  ( Fun  𝑆  ∧  dom  𝑆  =  𝑍 ) ) | 
						
							| 76 | 64 74 75 | sylanbrc | ⊢ ( 𝜑  →  𝑆  Fn  𝑍 ) |