Step |
Hyp |
Ref |
Expression |
1 |
|
om2noseq.1 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
2 |
|
om2noseq.2 |
⊢ ( 𝜑 → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
3 |
|
om2noseq.3 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) ) |
4 |
|
noseqrdg.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
noseqrdg.2 |
⊢ ( 𝜑 → 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ) |
6 |
|
noseqrdg.3 |
⊢ ( 𝜑 → 𝑆 = ran 𝑅 ) |
7 |
1 2 3 4 5 6
|
noseqrdgfn |
⊢ ( 𝜑 → 𝑆 Fn 𝑍 ) |
8 |
7
|
fnfund |
⊢ ( 𝜑 → Fun 𝑆 ) |
9 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω |
10 |
5
|
fneq1d |
⊢ ( 𝜑 → ( 𝑅 Fn ω ↔ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω ) ) |
11 |
9 10
|
mpbiri |
⊢ ( 𝜑 → 𝑅 Fn ω ) |
12 |
|
peano1 |
⊢ ∅ ∈ ω |
13 |
|
fnfvelrn |
⊢ ( ( 𝑅 Fn ω ∧ ∅ ∈ ω ) → ( 𝑅 ‘ ∅ ) ∈ ran 𝑅 ) |
14 |
11 12 13
|
sylancl |
⊢ ( 𝜑 → ( 𝑅 ‘ ∅ ) ∈ ran 𝑅 ) |
15 |
5
|
fveq1d |
⊢ ( 𝜑 → ( 𝑅 ‘ ∅ ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) ) |
16 |
|
opex |
⊢ 〈 𝐶 , 𝐴 〉 ∈ V |
17 |
|
fr0g |
⊢ ( 〈 𝐶 , 𝐴 〉 ∈ V → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 ) |
18 |
16 17
|
ax-mp |
⊢ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 |
19 |
15 18
|
eqtr2di |
⊢ ( 𝜑 → 〈 𝐶 , 𝐴 〉 = ( 𝑅 ‘ ∅ ) ) |
20 |
14 19 6
|
3eltr4d |
⊢ ( 𝜑 → 〈 𝐶 , 𝐴 〉 ∈ 𝑆 ) |
21 |
|
funopfv |
⊢ ( Fun 𝑆 → ( 〈 𝐶 , 𝐴 〉 ∈ 𝑆 → ( 𝑆 ‘ 𝐶 ) = 𝐴 ) ) |
22 |
8 20 21
|
sylc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = 𝐴 ) |