Metamath Proof Explorer


Theorem noseqrdg0

Description: Initial value of a recursive definition generator on surreal sequences. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypotheses om2noseq.1 ( 𝜑𝐶 No )
om2noseq.2 ( 𝜑𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) )
om2noseq.3 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) )
noseqrdg.1 ( 𝜑𝐴𝑉 )
noseqrdg.2 ( 𝜑𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) )
noseqrdg.3 ( 𝜑𝑆 = ran 𝑅 )
Assertion noseqrdg0 ( 𝜑 → ( 𝑆𝐶 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 om2noseq.1 ( 𝜑𝐶 No )
2 om2noseq.2 ( 𝜑𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) )
3 om2noseq.3 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) )
4 noseqrdg.1 ( 𝜑𝐴𝑉 )
5 noseqrdg.2 ( 𝜑𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) )
6 noseqrdg.3 ( 𝜑𝑆 = ran 𝑅 )
7 1 2 3 4 5 6 noseqrdgfn ( 𝜑𝑆 Fn 𝑍 )
8 7 fnfund ( 𝜑 → Fun 𝑆 )
9 frfnom ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) Fn ω
10 5 fneq1d ( 𝜑 → ( 𝑅 Fn ω ↔ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) Fn ω ) )
11 9 10 mpbiri ( 𝜑𝑅 Fn ω )
12 peano1 ∅ ∈ ω
13 fnfvelrn ( ( 𝑅 Fn ω ∧ ∅ ∈ ω ) → ( 𝑅 ‘ ∅ ) ∈ ran 𝑅 )
14 11 12 13 sylancl ( 𝜑 → ( 𝑅 ‘ ∅ ) ∈ ran 𝑅 )
15 5 fveq1d ( 𝜑 → ( 𝑅 ‘ ∅ ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ ∅ ) )
16 opex 𝐶 , 𝐴 ⟩ ∈ V
17 fr0g ( ⟨ 𝐶 , 𝐴 ⟩ ∈ V → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ ∅ ) = ⟨ 𝐶 , 𝐴 ⟩ )
18 16 17 ax-mp ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ ∅ ) = ⟨ 𝐶 , 𝐴
19 15 18 eqtr2di ( 𝜑 → ⟨ 𝐶 , 𝐴 ⟩ = ( 𝑅 ‘ ∅ ) )
20 14 19 6 3eltr4d ( 𝜑 → ⟨ 𝐶 , 𝐴 ⟩ ∈ 𝑆 )
21 funopfv ( Fun 𝑆 → ( ⟨ 𝐶 , 𝐴 ⟩ ∈ 𝑆 → ( 𝑆𝐶 ) = 𝐴 ) )
22 8 20 21 sylc ( 𝜑 → ( 𝑆𝐶 ) = 𝐴 )