| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2noseq.1 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 2 |
|
om2noseq.2 |
⊢ ( 𝜑 → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
| 3 |
|
om2noseq.3 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) ) |
| 4 |
|
noseqrdg.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
noseqrdg.2 |
⊢ ( 𝜑 → 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ) |
| 6 |
|
noseqrdg.3 |
⊢ ( 𝜑 → 𝑆 = ran 𝑅 ) |
| 7 |
1 2 3 4 5 6
|
noseqrdgfn |
⊢ ( 𝜑 → 𝑆 Fn 𝑍 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 𝑆 Fn 𝑍 ) |
| 9 |
8
|
fnfund |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → Fun 𝑆 ) |
| 10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) “ ω ) ) |
| 11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 𝐶 ∈ No ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 𝐵 ∈ 𝑍 ) |
| 13 |
10 11 12
|
noseqp1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 𝐵 +s 1s ) ∈ 𝑍 ) |
| 14 |
1 2 3 4 5
|
noseqrdglem |
⊢ ( ( 𝜑 ∧ ( 𝐵 +s 1s ) ∈ 𝑍 ) → 〈 ( 𝐵 +s 1s ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 +s 1s ) ) ) ) 〉 ∈ ran 𝑅 ) |
| 15 |
13 14
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 〈 ( 𝐵 +s 1s ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 +s 1s ) ) ) ) 〉 ∈ ran 𝑅 ) |
| 16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 𝑆 = ran 𝑅 ) |
| 17 |
15 16
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 〈 ( 𝐵 +s 1s ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 +s 1s ) ) ) ) 〉 ∈ 𝑆 ) |
| 18 |
|
funopfv |
⊢ ( Fun 𝑆 → ( 〈 ( 𝐵 +s 1s ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 +s 1s ) ) ) ) 〉 ∈ 𝑆 → ( 𝑆 ‘ ( 𝐵 +s 1s ) ) = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 +s 1s ) ) ) ) ) ) |
| 19 |
9 17 18
|
sylc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 𝑆 ‘ ( 𝐵 +s 1s ) ) = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 +s 1s ) ) ) ) ) |
| 20 |
1 2 3
|
om2noseqf1o |
⊢ ( 𝜑 → 𝐺 : ω –1-1-onto→ 𝑍 ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 𝐺 : ω –1-1-onto→ 𝑍 ) |
| 22 |
|
f1ocnvdm |
⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍 ∧ 𝐵 ∈ 𝑍 ) → ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) |
| 23 |
20 22
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) |
| 24 |
|
peano2 |
⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → suc ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) |
| 25 |
23 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → suc ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) |
| 26 |
21 25
|
jca |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 𝐺 : ω –1-1-onto→ 𝑍 ∧ suc ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) ) |
| 27 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝐶 ) ↾ ω ) ) |
| 28 |
11 27 23
|
om2noseqsuc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) +s 1s ) ) |
| 29 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍 ∧ 𝐵 ∈ 𝑍 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 𝐵 ) |
| 30 |
20 29
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 𝐵 ) |
| 31 |
30
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) +s 1s ) = ( 𝐵 +s 1s ) ) |
| 32 |
28 31
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( 𝐵 +s 1s ) ) |
| 33 |
|
f1ocnvfv |
⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍 ∧ suc ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( 𝐵 +s 1s ) → ( ◡ 𝐺 ‘ ( 𝐵 +s 1s ) ) = suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) |
| 34 |
26 32 33
|
sylc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( ◡ 𝐺 ‘ ( 𝐵 +s 1s ) ) = suc ( ◡ 𝐺 ‘ 𝐵 ) ) |
| 35 |
34
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 +s 1s ) ) ) = ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) |
| 36 |
35
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 +s 1s ) ) ) ) = ( 2nd ‘ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
| 37 |
19 36
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 𝑆 ‘ ( 𝐵 +s 1s ) ) = ( 2nd ‘ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
| 38 |
|
frsuc |
⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
| 40 |
5
|
fveq1d |
⊢ ( 𝜑 → ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) |
| 42 |
5
|
fveq1d |
⊢ ( 𝜑 → ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) |
| 43 |
42
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
| 45 |
39 41 44
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
| 46 |
1 2 3 4 5
|
om2noseqrdg |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) |
| 47 |
46
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) ) |
| 48 |
|
df-ov |
⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) |
| 49 |
47 48
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
| 50 |
45 49
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
| 51 |
|
fvex |
⊢ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ∈ V |
| 52 |
|
fvex |
⊢ ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ∈ V |
| 53 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) → ( 𝑧 +s 1s ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) +s 1s ) ) |
| 54 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) → ( 𝑧 𝐹 𝑤 ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 ) ) |
| 55 |
53 54
|
opeq12d |
⊢ ( 𝑧 = ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) → 〈 ( 𝑧 +s 1s ) , ( 𝑧 𝐹 𝑤 ) 〉 = 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) +s 1s ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 ) 〉 ) |
| 56 |
|
oveq2 |
⊢ ( 𝑤 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
| 57 |
56
|
opeq2d |
⊢ ( 𝑤 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) → 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) +s 1s ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 ) 〉 = 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) +s 1s ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) |
| 58 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 +s 1s ) = ( 𝑧 +s 1s ) ) |
| 59 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐹 𝑦 ) = ( 𝑧 𝐹 𝑦 ) ) |
| 60 |
58 59
|
opeq12d |
⊢ ( 𝑥 = 𝑧 → 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 = 〈 ( 𝑧 +s 1s ) , ( 𝑧 𝐹 𝑦 ) 〉 ) |
| 61 |
|
oveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝐹 𝑦 ) = ( 𝑧 𝐹 𝑤 ) ) |
| 62 |
61
|
opeq2d |
⊢ ( 𝑦 = 𝑤 → 〈 ( 𝑧 +s 1s ) , ( 𝑧 𝐹 𝑦 ) 〉 = 〈 ( 𝑧 +s 1s ) , ( 𝑧 𝐹 𝑤 ) 〉 ) |
| 63 |
60 62
|
cbvmpov |
⊢ ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) = ( 𝑧 ∈ V , 𝑤 ∈ V ↦ 〈 ( 𝑧 +s 1s ) , ( 𝑧 𝐹 𝑤 ) 〉 ) |
| 64 |
|
opex |
⊢ 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) +s 1s ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ∈ V |
| 65 |
55 57 63 64
|
ovmpo |
⊢ ( ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ∈ V ∧ ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ∈ V ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) = 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) +s 1s ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) |
| 66 |
51 52 65
|
mp2an |
⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) = 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) +s 1s ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 |
| 67 |
50 66
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) +s 1s ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) |
| 68 |
67
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( 2nd ‘ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( 2nd ‘ 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) +s 1s ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) ) |
| 69 |
|
ovex |
⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) +s 1s ) ∈ V |
| 70 |
|
ovex |
⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ∈ V |
| 71 |
69 70
|
op2nd |
⊢ ( 2nd ‘ 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) +s 1s ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
| 72 |
68 71
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( 2nd ‘ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
| 73 |
23 72
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 2nd ‘ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
| 74 |
1 2 3 4 5
|
noseqrdglem |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ∈ ran 𝑅 ) |
| 75 |
74 16
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ∈ 𝑆 ) |
| 76 |
|
funopfv |
⊢ ( Fun 𝑆 → ( 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ∈ 𝑆 → ( 𝑆 ‘ 𝐵 ) = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
| 77 |
9 75 76
|
sylc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 𝑆 ‘ 𝐵 ) = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
| 78 |
77
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( 𝑆 ‘ 𝐵 ) ) |
| 79 |
30 78
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) = ( 𝐵 𝐹 ( 𝑆 ‘ 𝐵 ) ) ) |
| 80 |
37 73 79
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑍 ) → ( 𝑆 ‘ ( 𝐵 +s 1s ) ) = ( 𝐵 𝐹 ( 𝑆 ‘ 𝐵 ) ) ) |