| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 2 |  | om2noseq.2 | ⊢ ( 𝜑  →  𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 3 |  | om2noseq.3 | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  “  ω ) ) | 
						
							| 4 |  | noseqrdg.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | noseqrdg.2 | ⊢ ( 𝜑  →  𝑅  =  ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ) | 
						
							| 6 |  | noseqrdg.3 | ⊢ ( 𝜑  →  𝑆  =  ran  𝑅 ) | 
						
							| 7 | 1 2 3 4 5 6 | noseqrdgfn | ⊢ ( 𝜑  →  𝑆  Fn  𝑍 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  𝑆  Fn  𝑍 ) | 
						
							| 9 | 8 | fnfund | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  Fun  𝑆 ) | 
						
							| 10 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  “  ω ) ) | 
						
							| 11 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  𝐶  ∈   No  ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  𝐵  ∈  𝑍 ) | 
						
							| 13 | 10 11 12 | noseqp1 | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 𝐵  +s   1s  )  ∈  𝑍 ) | 
						
							| 14 | 1 2 3 4 5 | noseqrdglem | ⊢ ( ( 𝜑  ∧  ( 𝐵  +s   1s  )  ∈  𝑍 )  →  〈 ( 𝐵  +s   1s  ) ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵  +s   1s  ) ) ) ) 〉  ∈  ran  𝑅 ) | 
						
							| 15 | 13 14 | syldan | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  〈 ( 𝐵  +s   1s  ) ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵  +s   1s  ) ) ) ) 〉  ∈  ran  𝑅 ) | 
						
							| 16 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  𝑆  =  ran  𝑅 ) | 
						
							| 17 | 15 16 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  〈 ( 𝐵  +s   1s  ) ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵  +s   1s  ) ) ) ) 〉  ∈  𝑆 ) | 
						
							| 18 |  | funopfv | ⊢ ( Fun  𝑆  →  ( 〈 ( 𝐵  +s   1s  ) ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵  +s   1s  ) ) ) ) 〉  ∈  𝑆  →  ( 𝑆 ‘ ( 𝐵  +s   1s  ) )  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵  +s   1s  ) ) ) ) ) ) | 
						
							| 19 | 9 17 18 | sylc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 𝑆 ‘ ( 𝐵  +s   1s  ) )  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵  +s   1s  ) ) ) ) ) | 
						
							| 20 | 1 2 3 | om2noseqf1o | ⊢ ( 𝜑  →  𝐺 : ω –1-1-onto→ 𝑍 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  𝐺 : ω –1-1-onto→ 𝑍 ) | 
						
							| 22 |  | f1ocnvdm | ⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍  ∧  𝐵  ∈  𝑍 )  →  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω ) | 
						
							| 23 | 20 22 | sylan | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω ) | 
						
							| 24 |  | peano2 | ⊢ ( ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω  →  suc  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  suc  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω ) | 
						
							| 26 | 21 25 | jca | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 𝐺 : ω –1-1-onto→ 𝑍  ∧  suc  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω ) ) | 
						
							| 27 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝐶 )  ↾  ω ) ) | 
						
							| 28 | 11 27 23 | om2noseqsuc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 𝐺 ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  +s   1s  ) ) | 
						
							| 29 |  | f1ocnvfv2 | ⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍  ∧  𝐵  ∈  𝑍 )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 30 | 20 29 | sylan | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  +s   1s  )  =  ( 𝐵  +s   1s  ) ) | 
						
							| 32 | 28 31 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 𝐺 ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) )  =  ( 𝐵  +s   1s  ) ) | 
						
							| 33 |  | f1ocnvfv | ⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍  ∧  suc  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω )  →  ( ( 𝐺 ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) )  =  ( 𝐵  +s   1s  )  →  ( ◡ 𝐺 ‘ ( 𝐵  +s   1s  ) )  =  suc  ( ◡ 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 34 | 26 32 33 | sylc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( ◡ 𝐺 ‘ ( 𝐵  +s   1s  ) )  =  suc  ( ◡ 𝐺 ‘ 𝐵 ) ) | 
						
							| 35 | 34 | fveq2d | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵  +s   1s  ) ) )  =  ( 𝑅 ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵  +s   1s  ) ) ) )  =  ( 2nd  ‘ ( 𝑅 ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 37 | 19 36 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 𝑆 ‘ ( 𝐵  +s   1s  ) )  =  ( 2nd  ‘ ( 𝑅 ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 38 |  | frsuc | ⊢ ( ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω  →  ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) )  =  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω )  →  ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) )  =  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 40 | 5 | fveq1d | ⊢ ( 𝜑  →  ( 𝑅 ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) )  =  ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω )  →  ( 𝑅 ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) )  =  ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 42 | 5 | fveq1d | ⊢ ( 𝜑  →  ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  =  ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 43 | 42 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) )  =  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω )  →  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) )  =  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ,  〈 𝐶 ,  𝐴 〉 )  ↾  ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 45 | 39 41 44 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω )  →  ( 𝑅 ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) )  =  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 46 | 1 2 3 4 5 | om2noseqrdg | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω )  →  ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  =  〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω )  →  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) )  =  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) ) | 
						
							| 48 |  | df-ov | ⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) )  =  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) | 
						
							| 49 | 47 48 | eqtr4di | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω )  →  ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) | 
						
							| 50 | 45 49 | eqtrd | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω )  →  ( 𝑅 ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) | 
						
							| 51 |  | fvex | ⊢ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  ∈  V | 
						
							| 52 |  | fvex | ⊢ ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) )  ∈  V | 
						
							| 53 |  | oveq1 | ⊢ ( 𝑧  =  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  →  ( 𝑧  +s   1s  )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  +s   1s  ) ) | 
						
							| 54 |  | oveq1 | ⊢ ( 𝑧  =  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  →  ( 𝑧 𝐹 𝑤 )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 ) ) | 
						
							| 55 | 53 54 | opeq12d | ⊢ ( 𝑧  =  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  →  〈 ( 𝑧  +s   1s  ) ,  ( 𝑧 𝐹 𝑤 ) 〉  =  〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  +s   1s  ) ,  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 ) 〉 ) | 
						
							| 56 |  | oveq2 | ⊢ ( 𝑤  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) )  →  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) | 
						
							| 57 | 56 | opeq2d | ⊢ ( 𝑤  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) )  →  〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  +s   1s  ) ,  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 ) 〉  =  〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  +s   1s  ) ,  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) | 
						
							| 58 |  | oveq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  +s   1s  )  =  ( 𝑧  +s   1s  ) ) | 
						
							| 59 |  | oveq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥 𝐹 𝑦 )  =  ( 𝑧 𝐹 𝑦 ) ) | 
						
							| 60 | 58 59 | opeq12d | ⊢ ( 𝑥  =  𝑧  →  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉  =  〈 ( 𝑧  +s   1s  ) ,  ( 𝑧 𝐹 𝑦 ) 〉 ) | 
						
							| 61 |  | oveq2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑧 𝐹 𝑦 )  =  ( 𝑧 𝐹 𝑤 ) ) | 
						
							| 62 | 61 | opeq2d | ⊢ ( 𝑦  =  𝑤  →  〈 ( 𝑧  +s   1s  ) ,  ( 𝑧 𝐹 𝑦 ) 〉  =  〈 ( 𝑧  +s   1s  ) ,  ( 𝑧 𝐹 𝑤 ) 〉 ) | 
						
							| 63 | 60 62 | cbvmpov | ⊢ ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 )  =  ( 𝑧  ∈  V ,  𝑤  ∈  V  ↦  〈 ( 𝑧  +s   1s  ) ,  ( 𝑧 𝐹 𝑤 ) 〉 ) | 
						
							| 64 |  | opex | ⊢ 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  +s   1s  ) ,  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉  ∈  V | 
						
							| 65 | 55 57 63 64 | ovmpo | ⊢ ( ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  ∈  V  ∧  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) )  ∈  V )  →  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) )  =  〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  +s   1s  ) ,  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) | 
						
							| 66 | 51 52 65 | mp2an | ⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) )  =  〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  +s   1s  ) ,  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 | 
						
							| 67 | 50 66 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω )  →  ( 𝑅 ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) )  =  〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  +s   1s  ) ,  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) | 
						
							| 68 | 67 | fveq2d | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω )  →  ( 2nd  ‘ ( 𝑅 ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) ) )  =  ( 2nd  ‘ 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  +s   1s  ) ,  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) ) | 
						
							| 69 |  | ovex | ⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  +s   1s  )  ∈  V | 
						
							| 70 |  | ovex | ⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) )  ∈  V | 
						
							| 71 | 69 70 | op2nd | ⊢ ( 2nd  ‘ 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) )  +s   1s  ) ,  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 72 | 68 71 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐺 ‘ 𝐵 )  ∈  ω )  →  ( 2nd  ‘ ( 𝑅 ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) ) )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) | 
						
							| 73 | 23 72 | syldan | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 2nd  ‘ ( 𝑅 ‘ suc  ( ◡ 𝐺 ‘ 𝐵 ) ) )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) | 
						
							| 74 | 1 2 3 4 5 | noseqrdglem | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  〈 𝐵 ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉  ∈  ran  𝑅 ) | 
						
							| 75 | 74 16 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  〈 𝐵 ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉  ∈  𝑆 ) | 
						
							| 76 |  | funopfv | ⊢ ( Fun  𝑆  →  ( 〈 𝐵 ,  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉  ∈  𝑆  →  ( 𝑆 ‘ 𝐵 )  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) | 
						
							| 77 | 9 75 76 | sylc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 𝑆 ‘ 𝐵 )  =  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 78 | 77 | eqcomd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) )  =  ( 𝑆 ‘ 𝐵 ) ) | 
						
							| 79 | 30 78 | oveq12d | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd  ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) )  =  ( 𝐵 𝐹 ( 𝑆 ‘ 𝐵 ) ) ) | 
						
							| 80 | 37 73 79 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝑍 )  →  ( 𝑆 ‘ ( 𝐵  +s   1s  ) )  =  ( 𝐵 𝐹 ( 𝑆 ‘ 𝐵 ) ) ) |