Step |
Hyp |
Ref |
Expression |
1 |
|
seqsfn.1 |
⊢ ( 𝜑 → 𝑀 ∈ No ) |
2 |
|
seqsfn.2 |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) “ ω ) ) |
3 |
|
eqidd |
⊢ ( 𝜑 → ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) ↾ ω ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) ↾ ω ) ) |
4 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 +s 1s ) = ( 𝑦 +s 1s ) ) |
5 |
4
|
cbvmptv |
⊢ ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) = ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) |
6 |
|
rdgeq1 |
⊢ ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) = ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) → rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) = rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) ) |
7 |
5 6
|
ax-mp |
⊢ rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) = rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) |
8 |
7
|
imaeq1i |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) “ ω ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) “ ω ) |
9 |
2 8
|
eqtrdi |
⊢ ( 𝜑 → 𝑍 = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) “ ω ) ) |
10 |
|
fvexd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ V ) |
11 |
|
eqidd |
⊢ ( 𝜑 → ( rec ( ( 𝑦 ∈ V , 𝑧 ∈ V ↦ 〈 ( 𝑦 +s 1s ) , ( 𝑦 ( 𝑤 ∈ V , 𝑡 ∈ V ↦ ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) ) 𝑧 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) = ( rec ( ( 𝑦 ∈ V , 𝑧 ∈ V ↦ 〈 ( 𝑦 +s 1s ) , ( 𝑦 ( 𝑤 ∈ V , 𝑡 ∈ V ↦ ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) ) 𝑧 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) ) |
12 |
11
|
seqsval |
⊢ ( 𝜑 → seqs 𝑀 ( + , 𝐹 ) = ran ( rec ( ( 𝑦 ∈ V , 𝑧 ∈ V ↦ 〈 ( 𝑦 +s 1s ) , ( 𝑦 ( 𝑤 ∈ V , 𝑡 ∈ V ↦ ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) ) 𝑧 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) ) |
13 |
1 3 9 10 11 12
|
noseqrdgfn |
⊢ ( 𝜑 → seqs 𝑀 ( + , 𝐹 ) Fn 𝑍 ) |