Metamath Proof Explorer


Theorem seqsfn

Description: The surreal sequence builder is a function. (Contributed by Scott Fenton, 19-Apr-2025)

Ref Expression
Hypotheses seqsfn.1 ( 𝜑𝑀 No )
seqsfn.2 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) “ ω ) )
Assertion seqsfn ( 𝜑 → seqs 𝑀 ( + , 𝐹 ) Fn 𝑍 )

Proof

Step Hyp Ref Expression
1 seqsfn.1 ( 𝜑𝑀 No )
2 seqsfn.2 ( 𝜑𝑍 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) “ ω ) )
3 eqidd ( 𝜑 → ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) ↾ ω ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) ↾ ω ) )
4 oveq1 ( 𝑥 = 𝑦 → ( 𝑥 +s 1s ) = ( 𝑦 +s 1s ) )
5 4 cbvmptv ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) = ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) )
6 rdgeq1 ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) = ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) → rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) = rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) )
7 5 6 ax-mp rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) = rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 )
8 7 imaeq1i ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) “ ω ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) “ ω )
9 2 8 eqtrdi ( 𝜑𝑍 = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +s 1s ) ) , 𝑀 ) “ ω ) )
10 fvexd ( 𝜑 → ( 𝐹𝑀 ) ∈ V )
11 eqidd ( 𝜑 → ( rec ( ( 𝑦 ∈ V , 𝑧 ∈ V ↦ ⟨ ( 𝑦 +s 1s ) , ( 𝑦 ( 𝑤 ∈ V , 𝑡 ∈ V ↦ ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) ) 𝑧 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω ) = ( rec ( ( 𝑦 ∈ V , 𝑧 ∈ V ↦ ⟨ ( 𝑦 +s 1s ) , ( 𝑦 ( 𝑤 ∈ V , 𝑡 ∈ V ↦ ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) ) 𝑧 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω ) )
12 11 seqsval ( 𝜑 → seqs 𝑀 ( + , 𝐹 ) = ran ( rec ( ( 𝑦 ∈ V , 𝑧 ∈ V ↦ ⟨ ( 𝑦 +s 1s ) , ( 𝑦 ( 𝑤 ∈ V , 𝑡 ∈ V ↦ ( 𝑡 + ( 𝐹 ‘ ( 𝑤 +s 1s ) ) ) ) 𝑧 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω ) )
13 1 3 9 10 11 12 noseqrdgfn ( 𝜑 → seqs 𝑀 ( + , 𝐹 ) Fn 𝑍 )