| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqsfn.1 | ⊢ ( 𝜑  →  𝑀  ∈   No  ) | 
						
							| 2 |  | seqsfn.2 | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝑀 )  “  ω ) ) | 
						
							| 3 |  | eqidd | ⊢ ( 𝜑  →  ( rec ( ( 𝑦  ∈  V  ↦  ( 𝑦  +s   1s  ) ) ,  𝑀 )  ↾  ω )  =  ( rec ( ( 𝑦  ∈  V  ↦  ( 𝑦  +s   1s  ) ) ,  𝑀 )  ↾  ω ) ) | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  +s   1s  )  =  ( 𝑦  +s   1s  ) ) | 
						
							| 5 | 4 | cbvmptv | ⊢ ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) )  =  ( 𝑦  ∈  V  ↦  ( 𝑦  +s   1s  ) ) | 
						
							| 6 |  | rdgeq1 | ⊢ ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) )  =  ( 𝑦  ∈  V  ↦  ( 𝑦  +s   1s  ) )  →  rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝑀 )  =  rec ( ( 𝑦  ∈  V  ↦  ( 𝑦  +s   1s  ) ) ,  𝑀 ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝑀 )  =  rec ( ( 𝑦  ∈  V  ↦  ( 𝑦  +s   1s  ) ) ,  𝑀 ) | 
						
							| 8 | 7 | imaeq1i | ⊢ ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝑀 )  “  ω )  =  ( rec ( ( 𝑦  ∈  V  ↦  ( 𝑦  +s   1s  ) ) ,  𝑀 )  “  ω ) | 
						
							| 9 | 2 8 | eqtrdi | ⊢ ( 𝜑  →  𝑍  =  ( rec ( ( 𝑦  ∈  V  ↦  ( 𝑦  +s   1s  ) ) ,  𝑀 )  “  ω ) ) | 
						
							| 10 |  | fvexd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ∈  V ) | 
						
							| 11 |  | eqidd | ⊢ ( 𝜑  →  ( rec ( ( 𝑦  ∈  V ,  𝑧  ∈  V  ↦  〈 ( 𝑦  +s   1s  ) ,  ( 𝑦 ( 𝑤  ∈  V ,  𝑡  ∈  V  ↦  ( 𝑡  +  ( 𝐹 ‘ ( 𝑤  +s   1s  ) ) ) ) 𝑧 ) 〉 ) ,  〈 𝑀 ,  ( 𝐹 ‘ 𝑀 ) 〉 )  ↾  ω )  =  ( rec ( ( 𝑦  ∈  V ,  𝑧  ∈  V  ↦  〈 ( 𝑦  +s   1s  ) ,  ( 𝑦 ( 𝑤  ∈  V ,  𝑡  ∈  V  ↦  ( 𝑡  +  ( 𝐹 ‘ ( 𝑤  +s   1s  ) ) ) ) 𝑧 ) 〉 ) ,  〈 𝑀 ,  ( 𝐹 ‘ 𝑀 ) 〉 )  ↾  ω ) ) | 
						
							| 12 | 11 | seqsval | ⊢ ( 𝜑  →  seqs 𝑀 (  +  ,  𝐹 )  =  ran  ( rec ( ( 𝑦  ∈  V ,  𝑧  ∈  V  ↦  〈 ( 𝑦  +s   1s  ) ,  ( 𝑦 ( 𝑤  ∈  V ,  𝑡  ∈  V  ↦  ( 𝑡  +  ( 𝐹 ‘ ( 𝑤  +s   1s  ) ) ) ) 𝑧 ) 〉 ) ,  〈 𝑀 ,  ( 𝐹 ‘ 𝑀 ) 〉 )  ↾  ω ) ) | 
						
							| 13 | 1 3 9 10 11 12 | noseqrdgfn | ⊢ ( 𝜑  →  seqs 𝑀 (  +  ,  𝐹 )  Fn  𝑍 ) |