Metamath Proof Explorer


Theorem seqs1

Description: The value of the surreal sequence bulder function at its initial value. (Contributed by Scott Fenton, 19-Apr-2025)

Ref Expression
Hypothesis seqs1.1 ( 𝜑𝑀 No )
Assertion seqs1 ( 𝜑 → ( seqs 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹𝑀 ) )

Proof

Step Hyp Ref Expression
1 seqs1.1 ( 𝜑𝑀 No )
2 eqidd ( 𝜑 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) ↾ ω ) )
3 eqidd ( 𝜑 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) “ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) “ ω ) )
4 fvexd ( 𝜑 → ( 𝐹𝑀 ) ∈ V )
5 eqidd ( 𝜑 → ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω ) )
6 5 seqsval ( 𝜑 → seqs 𝑀 ( + , 𝐹 ) = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω ) )
7 1 2 3 4 5 6 noseqrdg0 ( 𝜑 → ( seqs 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹𝑀 ) )