Step |
Hyp |
Ref |
Expression |
1 |
|
seqs1.1 |
⊢ ( 𝜑 → 𝑀 ∈ No ) |
2 |
|
eqidd |
⊢ ( 𝜑 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) ↾ ω ) ) |
3 |
|
eqidd |
⊢ ( 𝜑 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) “ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 𝑀 ) “ ω ) ) |
4 |
|
fvexd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ V ) |
5 |
|
eqidd |
⊢ ( 𝜑 → ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) ) |
6 |
5
|
seqsval |
⊢ ( 𝜑 → seqs 𝑀 ( + , 𝐹 ) = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) ) |
7 |
1 2 3 4 5 6
|
noseqrdg0 |
⊢ ( 𝜑 → ( seqs 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |