| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqs1.1 | ⊢ ( 𝜑  →  𝑀  ∈   No  ) | 
						
							| 2 |  | eqidd | ⊢ ( 𝜑  →  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝑀 )  ↾  ω )  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝑀 )  ↾  ω ) ) | 
						
							| 3 |  | eqidd | ⊢ ( 𝜑  →  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝑀 )  “  ω )  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +s   1s  ) ) ,  𝑀 )  “  ω ) ) | 
						
							| 4 |  | fvexd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ∈  V ) | 
						
							| 5 |  | eqidd | ⊢ ( 𝜑  →  ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 ( 𝑧  ∈  V ,  𝑤  ∈  V  ↦  ( 𝑤  +  ( 𝐹 ‘ ( 𝑧  +s   1s  ) ) ) ) 𝑦 ) 〉 ) ,  〈 𝑀 ,  ( 𝐹 ‘ 𝑀 ) 〉 )  ↾  ω )  =  ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 ( 𝑧  ∈  V ,  𝑤  ∈  V  ↦  ( 𝑤  +  ( 𝐹 ‘ ( 𝑧  +s   1s  ) ) ) ) 𝑦 ) 〉 ) ,  〈 𝑀 ,  ( 𝐹 ‘ 𝑀 ) 〉 )  ↾  ω ) ) | 
						
							| 6 | 5 | seqsval | ⊢ ( 𝜑  →  seqs 𝑀 (  +  ,  𝐹 )  =  ran  ( rec ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  〈 ( 𝑥  +s   1s  ) ,  ( 𝑥 ( 𝑧  ∈  V ,  𝑤  ∈  V  ↦  ( 𝑤  +  ( 𝐹 ‘ ( 𝑧  +s   1s  ) ) ) ) 𝑦 ) 〉 ) ,  〈 𝑀 ,  ( 𝐹 ‘ 𝑀 ) 〉 )  ↾  ω ) ) | 
						
							| 7 | 1 2 3 4 5 6 | noseqrdg0 | ⊢ ( 𝜑  →  ( seqs 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 )  =  ( 𝐹 ‘ 𝑀 ) ) |