Metamath Proof Explorer


Theorem seqsval

Description: The value of the surreal sequence builder. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Hypothesis seqsval.1 ( 𝜑𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω ) )
Assertion seqsval ( 𝜑 → seqs 𝑀 ( + , 𝐹 ) = ran 𝑅 )

Proof

Step Hyp Ref Expression
1 seqsval.1 ( 𝜑𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω ) )
2 df-seqs seqs 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) “ ω )
3 eqid V = V
4 fvoveq1 ( 𝑧 = 𝑥 → ( 𝐹 ‘ ( 𝑧 +s 1s ) ) = ( 𝐹 ‘ ( 𝑥 +s 1s ) ) )
5 4 oveq2d ( 𝑧 = 𝑥 → ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) = ( 𝑤 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) )
6 oveq1 ( 𝑤 = 𝑦 → ( 𝑤 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) = ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) )
7 eqid ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) = ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) )
8 ovex ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ∈ V
9 5 6 7 8 ovmpo ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) = ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) )
10 9 el2v ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) = ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) )
11 10 opeq2i ⟨ ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) ⟩ = ⟨ ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ⟩
12 3 3 11 mpoeq123i ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) ⟩ ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ⟩ )
13 rdgeq1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) ⟩ ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ⟩ ) → rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) )
14 12 13 ax-mp rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ )
15 14 imaeq1i ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) “ ω ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) “ ω )
16 df-ima ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω )
17 2 15 16 3eqtr2i seqs 𝑀 ( + , 𝐹 ) = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω )
18 1 rneqd ( 𝜑 → ran 𝑅 = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω ) )
19 17 18 eqtr4id ( 𝜑 → seqs 𝑀 ( + , 𝐹 ) = ran 𝑅 )