Step |
Hyp |
Ref |
Expression |
1 |
|
seqsval.1 |
⊢ ( 𝜑 → 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) ) |
2 |
|
df-seqs |
⊢ seqs 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) |
3 |
|
eqid |
⊢ V = V |
4 |
|
fvoveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ ( 𝑧 +s 1s ) ) = ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) |
5 |
4
|
oveq2d |
⊢ ( 𝑧 = 𝑥 → ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) = ( 𝑤 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ) |
6 |
|
oveq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) = ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ) |
7 |
|
eqid |
⊢ ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) = ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) |
8 |
|
ovex |
⊢ ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ∈ V |
9 |
5 6 7 8
|
ovmpo |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) = ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ) |
10 |
9
|
el2v |
⊢ ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) = ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) |
11 |
10
|
opeq2i |
⊢ 〈 ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) 〉 = 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 |
12 |
3 3 11
|
mpoeq123i |
⊢ ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) 〉 ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) |
13 |
|
rdgeq1 |
⊢ ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) 〉 ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) → rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ) |
14 |
12 13
|
ax-mp |
⊢ rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) |
15 |
14
|
imaeq1i |
⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) |
16 |
|
df-ima |
⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) |
17 |
2 15 16
|
3eqtr2i |
⊢ seqs 𝑀 ( + , 𝐹 ) = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) |
18 |
1
|
rneqd |
⊢ ( 𝜑 → ran 𝑅 = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 +s 1s ) ) ) ) 𝑦 ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) ↾ ω ) ) |
19 |
17 18
|
eqtr4id |
⊢ ( 𝜑 → seqs 𝑀 ( + , 𝐹 ) = ran 𝑅 ) |