Metamath Proof Explorer


Definition df-seqs

Description: Define a general-purpose sequence builder for surreal numbers. Compare df-seq . Note that in the theorems we develop here, we do not require M to be an integer. This is because there are infinite surreal numbers and we may want to start our sequence there. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Assertion df-seqs seqs 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) “ ω )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cM 𝑀
1 c.pl +
2 cF 𝐹
3 1 2 0 cseqs seqs 𝑀 ( + , 𝐹 )
4 vx 𝑥
5 cvv V
6 vy 𝑦
7 4 cv 𝑥
8 cadds +s
9 c1s 1s
10 7 9 8 co ( 𝑥 +s 1s )
11 6 cv 𝑦
12 10 2 cfv ( 𝐹 ‘ ( 𝑥 +s 1s ) )
13 11 12 1 co ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) )
14 10 13 cop ⟨ ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ⟩
15 4 6 5 5 14 cmpo ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ⟩ )
16 0 2 cfv ( 𝐹𝑀 )
17 0 16 cop 𝑀 , ( 𝐹𝑀 ) ⟩
18 15 17 crdg rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ )
19 com ω
20 18 19 cima ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) “ ω )
21 3 20 wceq seqs 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) “ ω )