Step |
Hyp |
Ref |
Expression |
0 |
|
cM |
⊢ 𝑀 |
1 |
|
c.pl |
⊢ + |
2 |
|
cF |
⊢ 𝐹 |
3 |
1 2 0
|
cseqs |
⊢ seqs 𝑀 ( + , 𝐹 ) |
4 |
|
vx |
⊢ 𝑥 |
5 |
|
cvv |
⊢ V |
6 |
|
vy |
⊢ 𝑦 |
7 |
4
|
cv |
⊢ 𝑥 |
8 |
|
cadds |
⊢ +s |
9 |
|
c1s |
⊢ 1s |
10 |
7 9 8
|
co |
⊢ ( 𝑥 +s 1s ) |
11 |
6
|
cv |
⊢ 𝑦 |
12 |
10 2
|
cfv |
⊢ ( 𝐹 ‘ ( 𝑥 +s 1s ) ) |
13 |
11 12 1
|
co |
⊢ ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) |
14 |
10 13
|
cop |
⊢ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 |
15 |
4 6 5 5 14
|
cmpo |
⊢ ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) |
16 |
0 2
|
cfv |
⊢ ( 𝐹 ‘ 𝑀 ) |
17 |
0 16
|
cop |
⊢ 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 |
18 |
15 17
|
crdg |
⊢ rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) |
19 |
|
com |
⊢ ω |
20 |
18 19
|
cima |
⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) |
21 |
3 20
|
wceq |
⊢ seqs 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 +s 1s ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 +s 1s ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) |