| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cM |
|- M |
| 1 |
|
c.pl |
|- .+ |
| 2 |
|
cF |
|- F |
| 3 |
1 2 0
|
cseqs |
|- seq_s M ( .+ , F ) |
| 4 |
|
vx |
|- x |
| 5 |
|
cvv |
|- _V |
| 6 |
|
vy |
|- y |
| 7 |
4
|
cv |
|- x |
| 8 |
|
cadds |
|- +s |
| 9 |
|
c1s |
|- 1s |
| 10 |
7 9 8
|
co |
|- ( x +s 1s ) |
| 11 |
6
|
cv |
|- y |
| 12 |
10 2
|
cfv |
|- ( F ` ( x +s 1s ) ) |
| 13 |
11 12 1
|
co |
|- ( y .+ ( F ` ( x +s 1s ) ) ) |
| 14 |
10 13
|
cop |
|- <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. |
| 15 |
4 6 5 5 14
|
cmpo |
|- ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) |
| 16 |
0 2
|
cfv |
|- ( F ` M ) |
| 17 |
0 16
|
cop |
|- <. M , ( F ` M ) >. |
| 18 |
15 17
|
crdg |
|- rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) |
| 19 |
|
com |
|- _om |
| 20 |
18 19
|
cima |
|- ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) |
| 21 |
3 20
|
wceq |
|- seq_s M ( .+ , F ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) |