Step |
Hyp |
Ref |
Expression |
0 |
|
cM |
|- M |
1 |
|
c.pl |
|- .+ |
2 |
|
cF |
|- F |
3 |
1 2 0
|
cseqs |
|- seq_s M ( .+ , F ) |
4 |
|
vx |
|- x |
5 |
|
cvv |
|- _V |
6 |
|
vy |
|- y |
7 |
4
|
cv |
|- x |
8 |
|
cadds |
|- +s |
9 |
|
c1s |
|- 1s |
10 |
7 9 8
|
co |
|- ( x +s 1s ) |
11 |
6
|
cv |
|- y |
12 |
10 2
|
cfv |
|- ( F ` ( x +s 1s ) ) |
13 |
11 12 1
|
co |
|- ( y .+ ( F ` ( x +s 1s ) ) ) |
14 |
10 13
|
cop |
|- <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. |
15 |
4 6 5 5 14
|
cmpo |
|- ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) |
16 |
0 2
|
cfv |
|- ( F ` M ) |
17 |
0 16
|
cop |
|- <. M , ( F ` M ) >. |
18 |
15 17
|
crdg |
|- rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) |
19 |
|
com |
|- _om |
20 |
18 19
|
cima |
|- ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) |
21 |
3 20
|
wceq |
|- seq_s M ( .+ , F ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) |