Metamath Proof Explorer


Definition df-seqs

Description: Define a general-purpose sequence builder for surreal numbers. Compare df-seq . Note that in the theorems we develop here, we do not require M to be an integer. This is because there are infinite surreal numbers and we may want to start our sequence there. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Assertion df-seqs
|- seq_s M ( .+ , F ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cM
 |-  M
1 c.pl
 |-  .+
2 cF
 |-  F
3 1 2 0 cseqs
 |-  seq_s M ( .+ , F )
4 vx
 |-  x
5 cvv
 |-  _V
6 vy
 |-  y
7 4 cv
 |-  x
8 cadds
 |-  +s
9 c1s
 |-  1s
10 7 9 8 co
 |-  ( x +s 1s )
11 6 cv
 |-  y
12 10 2 cfv
 |-  ( F ` ( x +s 1s ) )
13 11 12 1 co
 |-  ( y .+ ( F ` ( x +s 1s ) ) )
14 10 13 cop
 |-  <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >.
15 4 6 5 5 14 cmpo
 |-  ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. )
16 0 2 cfv
 |-  ( F ` M )
17 0 16 cop
 |-  <. M , ( F ` M ) >.
18 15 17 crdg
 |-  rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. )
19 com
 |-  _om
20 18 19 cima
 |-  ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om )
21 3 20 wceq
 |-  seq_s M ( .+ , F ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om )