Step |
Hyp |
Ref |
Expression |
1 |
|
df-seqs |
|- seq_s M ( .+ , F ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) |
2 |
|
rdgfun |
|- Fun rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) |
3 |
|
dcomex |
|- _om e. _V |
4 |
3
|
funimaex |
|- ( Fun rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) -> ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) e. _V ) |
5 |
2 4
|
ax-mp |
|- ( rec ( ( x e. _V , y e. _V |-> <. ( x +s 1s ) , ( y .+ ( F ` ( x +s 1s ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) e. _V |
6 |
1 5
|
eqeltri |
|- seq_s M ( .+ , F ) e. _V |