Metamath Proof Explorer


Theorem seqsex

Description: Existence of the surreal sequence builder operation. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Assertion seqsex seq s M + ˙ F V

Proof

Step Hyp Ref Expression
1 df-seqs seq s M + ˙ F = rec x V , y V x + s 1 s y + ˙ F x + s 1 s M F M ω
2 rdgfun Fun rec x V , y V x + s 1 s y + ˙ F x + s 1 s M F M
3 dcomex ω V
4 3 funimaex Fun rec x V , y V x + s 1 s y + ˙ F x + s 1 s M F M rec x V , y V x + s 1 s y + ˙ F x + s 1 s M F M ω V
5 2 4 ax-mp rec x V , y V x + s 1 s y + ˙ F x + s 1 s M F M ω V
6 1 5 eqeltri seq s M + ˙ F V